
60499500

<§§>
CONTRpL DATA
CORPORATION

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1 /COMMUNICATIONS
CONTROL PROGRAM VERSION 3

HOST APPLICATION PROGRAMMING
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 2

REVISION RECORD

Revision

A (12/01/76)

B (04/01/77)

C (07/01/77)

D (04/28/78)

E (08/15/78)

F (12/18/78)

6 (01/15/79)

H (08/10/79)

J (12/11/79)

K (04/18/80)

L (10/31/80)

M (05/29/81)

N (02/26/82)

P (01/14/83)

R (09/30/83)

S (09/19/84)

Description

Original Release. PSR level 439.

Revised to PSR level 446 for technical corrections.

Revised to PSR level 452 for technical corrections.

Completely revised for NAM Version 1.1 release at PSR level 472 to include support of
remote and foreign NPUs, asynchronous and HASP TIPs, virtual terminals, IAF, and TVF.

Revised at PSR level 477 for technical corrections.

Revised at PSR level 485 for technical corrections.

Revised at PSR level 485 for additional technical corrections.

Revised to reflect release of HAM Version 1.2. Included are descriptions of the binary
debug log file and postprocessor, special editing support, and QTRM.

Revised to reflect addition of connection duplexing, upline block truncation, block
header break markers, QTRM connection switching, and various technical corrections.

Revised at PSR level 517 to reflect the addition of 714 printer support, and various
technical corrections

.

Revised at PSR level 528 to reflect the addition of QTRM support of application-to-
application connections, the user-interrupt capability, and various technical corrections.

Revised for NAM Version 1.3 release at PSR level 541 to include 2780/3780 terminal
support, changeB to supervisory messages, PRU interface, and various technical
corrections

.

Revised at PSR level 559 to reflect release of NAM Version 1.4, which supports N0S
Version 2.0 and includes the disable flag parameter on the LST/HDX/R supervisory message
and miscellaneous technical corrections.

Revised at PSR level 580 to reflect release of NAM Version 1.5 and CCP Version 3.5, which
run only under the N0S Version 2 operating system. This manual, which was previously
known as the NAM Reference Manual, is no longer applicable to products operating under
NOS 1. It has been reorganized to document information needed by a general networks
user, who must consider NAM as well as CCP when writing a network application. This is a
complete reprint.

Revised at PSR level 596 to reflect release of NAM Version 1.6 and CCP Version 3.6,
supporting multiple-host networks. This is a complete reprint.

Revised at PSR level 617 to reflect release of NAM Version 1.7 and CCP Version 3.7 to
document support of a 3270 bisynchronous terminal class and miscellaneous technical
corrections.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION
1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984
All Rights Reserved
Printed in the United States of America

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

ii
60499500 S

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected. A bar by the page number

indicates pagination rather than content has changed.

Page Revision

Front Cover _

Title Page -

il S

iii/iv S

v thru vii s

viii R
ix thru xii S

xiii R
1-1 R
1-2 R
1-3 thru 1-8 S

1-9 R
1-10 R
1-11 thru 1-14 S

2-1 S
2-2 R
2-3 R
2-4 S

2-5 R
2-6 S

2-7 R
2-8 S

2-9 R
2-10 R
2-11 thru 2-14 S

2-15 thru 2-19 R
2-20 thru 2-22 S

2-22.1/2-22.2 S
2-23 thru 2-26 R
2-27 S

2-28 S

2-29 R
2-30 S

2-31 S

2-32 thru 2-38 R
3-1 thru 3-5 R
3-6 thru 3-12 S

3-13 thru 3-17 R
3-18 thru 3-24 S

3-24.1 S

3-24.2 S

3-25 thru 3-28 R
3-29 S

3-30 thru 3-44 R
3-44.1/3-44.2 S

3-45 R
3-46 R
3-47 S
3-48 thru 3-50 R
3-51 thru 3-54 S

3-55 R
3-56 S

3-57 thru 3-61 R
3-62 S

3-63 S

Page Revision

4-1 thru 4-13 R
4-14 thru 4-16 S

4-17 R
4-18 R
5-1 R
5-2 S

5-3 thru 5-17 R
6-1 R
6-2 R
6-3 thru 6-6 S

6-7 thru 6-15 R
6-16 S

6-17 R
7-1 thru 7-38 R
8-1 R
8-2 thru 8-10 S

8-10.1/8-10.2 S

8-11 thru 8-18 R
8-19 S

8-20 thru 8-37 R
9-1 S

A-l thru A-3 R
A-4 S

A-5 thru A-l

9

R
A-20 thru A-23 S

A-24 R
A-25 R
A-26 S

A-27 thru A-31 R
A-32 S

A-33 thru A-3

8

R
A-39 S

A-40 thru A-46 R
A-47 S

A-48 R

B-l S

B-2 R
B-3 S

B-4 S

B-5 thru B-9 R
C-l thru C-7 R
C-8 S

C-9 thru C-ll R
C-l 2 S

C-13 R
D-l S

D-2 S

Index-1 R
Index-2 S

Index-3 S

Index-4 R
Index-5 S

Comment Sheet/Mailer S

Back Cover -

60499500 S iii/iv

PREFACE

This manual supplies reference Information to both
Network Access Method (NAM) Version 1.7 and Commu-
nications Control Program (CCP) Version 3.7 users,
typically either programmers or analysts who are
writing a network application or who would like to
learn more about how the various portions of the
network fit together.

This manual describes how application programs
interface to the computer network. The NAM 1/CCP 3
Terminal Interface reference manual describes how
the terminal user gains access to these applica-
tions. Also, this manual familiarizes the reader
with the network processing unit (NPU) and the
Communications Control Program (CCP). Knowledge of
the NPU and CCP, however, is not necessary to write
an application program.

NAM and CCP operate under control of the NOS 2

operating system for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Computer Systems; CDC ®
CYBER 70 Computer System models 71, 72, 73, and 74;
and 6000 Computer Systems.

NAM is the subset of the host computer software
that provides communication between an application
program in the host computer and other applica-
tion programs or devices accessing the network's
resources.

The Communications Control Program is software that
resides in a 255x series network processing unit
that allows a device to access the host computer
over communications lines.

WHO SHOULD READ THIS
MANUAL

This manual is directed at a programmer or analyst
who is familiar with subsystem applications
programming, compiler and assembler programming
conventions, terminal communication protocols, other
network software products , and the programming
requirements of supported devices.

HOW THIS MANUAL IS

ORGANIZED
Section 1 introduces the NAM and CCP software.
Section 2 describes the protocols governing infor-
mation exchanged for communication between NAM and
each application program, and between application
programs and their connections. Section 3 describes
the synchronous and asynchronous supervisory mes-
sages used by application programs. Section 4

describes the language and internal interfaces
required by an application program. Section 5 dis-
cusses the application interface program statements
used by NAM to access the network and to send and
receive messages. Section 6 discusses the structure
and execution of an application program job as a
batch or system origin type file. Section 7

contains a FORTRAN program using AIP; section 8

describes QTRM. Section 9 describes network
failure and techniques of recovery.

Additional reference information for the Communica-
tions Control Program can be found in other network
product and operating system publications. Use
table 0-1 to locate this information.

TABLE 0-1. LOCATION OF CCP REFERENCE INFORMATION

Information

Manual That Contains Information

NOS
Version 2

Adminis-
tration
Handbook

NAM 1/CCP 3

Terminal
Interfaces
Reference
Manual

NOS
Version 2

System
Analysis
Handbook

Communications
Control Pro-
gram Version 3

Diagnostic
Handbook

NOS
Version 2

Opera-
tions
Handbook

Communications
Control Program
Internal
Maintenance
Specificatlont

CCP overview, concepts,
and functions

X

Character sets X

CCP glossary X

Mnemonics X

Statistics X

Halt Codes X

60499500 S

TABLE 0-1. LOCATION OF CCP REFERENCE INFORMATION (Contd)

Information

Manual That Contains Information

NOS
Version 2

Adminis-
tration
Handbook

NAM 1/CCP 3

Terminal
Interfaces
Reference
Manual

NOS
Version 2

System
Analysis
Handbook

Communications
Control Pro-
gram Version 3

Diagnostic
Handbook

NOS
Version 2

Opera-
tions
Handbook

Communications
Control Program
Internal
Maintenance
Specificationt

Diagnostics X

Customer Engineering
error messages

X

Dump information X

NPU operating
instructions

X X

Memory map X

Naming conventions X

NPU dumping, loading,
and initializing
details

X

TAvailable from Software Manufacturing Distribution (SMD), 4201 Lexington Ave. North, Arden Hills,
Minnesota 55112

RELATED PUBLICATIONS
Related material is contained in the publications
listed below. Other manuals may be needed, such as
the hardware, firmware, or emulator software refer-
ence manual for the devices serviced by a given
program. Also, communication standards and device
operating literature can be useful.

The Software Publications Release History gives the
titles and revision levels of software manuals
available for the Programming System Report (PSR)
level of NOS 2 and its product set installed at your
site.

The following manuals are of primary interest;

Publication

Network Products
Network Access Method Version 1

Network Definition Language
Reference Manual

Network Products
Network Access Method Version 1/

Communications Control Program Version 3
Terminal Interfaces Reference Manual

NOS Version 2 Reference Set, Volume 1

Introduction to Interactive Usage

NOS Version 2 Reference Set, Volume 3
System Commands

BOS Version 2 Reference Set, Volume 4
Program Interface

Publication
Number

60480000

60480600

60459660

60459680

60459690

vi 60499500 S

The following manuals are of secondary Interest:

Publication

Communications Control Program Version 3

Diagnostic Handbook

COMPASS Version 3

Reference Manual

COBOL Version 5

Reference Manual

CYBER Cross System Version 1

Build Utilities Reference Manual

CYBER Cross System Version 1

Macro Assembler Reference Manual

CYBER Cross System Version 1

Micro Assembler Reference Manual

CYBER Cross System Version 1

PASCAL Reference Manual

FORTRAN Version 5

Reference Manual

Hardware Performance Analyzer (HFA)

User Reference Manual

Message Control System Version 1

Reference Manual

NOS Version 2
Diagnostic Index

NOS Version 2
Installation Handbook

Publication
Number

60471500

60492600

60497100

60471200

96836500

96836400

96836100

60481300

60459460

60480300

60459390

60459320

NOS Version 2

Manual Abstracts

NOS Version 2
Administration Handbook

NOS Version 2

Operations Handbook

NOS Version 2

Analysis Handbook

Network Products
Remote Batch Facility Version 1

Reference Manual

Software Publications Release History

TAF Version 1

Reference Manual

2551-1, 2551-2, 2552-2 Network Processor
Unit Hardware Reference Manual

2560 Series Synchronous Communications
Line Adapter Hardware Maintenance Manual

60485500

60459840

60459310

60459300

60499600

60481000

60459500

60472800

74700700

60499500 S

Publication
Publication Number

2561 Series Asynchronous Communications
Line Adapter Hardware Maintenance Manual 74700900

2563 Series SDLC Line Adapter
Hardware Maintenance Manual 74873290

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103.

This product is intended for use only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

v111 60499500 R

CONTENTS

NOTATIONS xiil

1. NETWORK PRODUCTS: AN OVERVIEW 1-1

Computer Network 1-1

Communications Network 1-2

Services Network 1-2

Software Components of the Network 1-2

Network Access Method 1-2

Peripheral Interface Program 1-4
Network Interface Program 1-4

Application Interface Program 1-4

Queued Terminal Record Manager 1-4

Network Definition Language Processor 1-4

Network Supervisor 1-5

Communication Supervisor 1-5
Network Validation Facility 1-5
Network Utilities 1-5

Network Dump Analyzer 1-5

Load File Generator 1-5

Debug Log File Processor 1-6

Hardware Performance Analyzer 1-6

NAM Application Programs 1-6

CDC CYBER Cross System Software 1-6

Network Processing Unit and Communications
Control Program 1-6

Network Processing Unit 1-6

| Communications Control Program 1-7
Base System Software 1-7

| System Autostart Module 1-7

Service Module 1-8

Host Interface Program 1-8

Terminal Interface Program 1-8

Link Interface Program 1-8

Block Interface Program 1-8

In-Line and On-Line Diagnostics 1-8

NPU Console Debugging Aids 1-8

Performance and Statistics Programs 1-8

| The Packet Switching Network (PSN) 1-8

NAM Concepts 1-8

Virtual Terminals 1-9
Logical Connections 1-9

Owning Consoles 1-10
Network Access Method Operation 1-10

Application Program Concepts 1-12

Connection Processing Flow 1-12
Supported Terminals 1-12

2. INFORMATION PROTOCOLS 2-1

Information Flow 2-1

Structure Protocols 2-1

Physical Protocols and Network Blocks 2-1

Logical Protocol and Physical Blocks 2-1

Network Data Blocks 2-2

Transmission Blocks 2-4

Interactive Terminal Input Concepts 2-4

Line Mode Operation 2-4

Block Mode Operation 2-4

Physical and Logical Lines 2-5
End-of-Line Indicators 2-5

Multiple Logical Lines in One Message 2-5
End-of-Block Indicators 2-6

Interactive Terminal Output Concepts 2-7

Batch Device Data 2-7

Application-to-Application Input and

Output Concepts 2-7

Information Identification Protocols 2-7

Application Program Message Types 2-7

Application Block Types 2-7

Block Buffer Areas 2-8

Block Header Area 2-8

Block Text Area 2-8

Connection Identifiers 2-9

Application Connection Number 2-9

Application List Number 2-9

Data Message Content and Sequence Protocols 2-10

Interactive Virtual Terminal Data 2-10

Line Turnaround Convention 2-11

Interactive Virtual Terminal Exchange
Modes 2-11

Normalized Mode Operation 2-11
Upline Character Sets and Editing
Modes 2-12

Downline Character Sets 2-14

Page Width and Page Length 2-14

Format Effectors 2-14

Transparent Mode Operation 2-19

Application-to-Application
Connection Data 2-22.1

Application Character Types 2-23

Character Byte Content 2-24

Block Header Content 2-24

Supervisory Message Content and Sequence
Protocols 2-31

Asynchronous Messages 2-35

Synchronous Messages 2-36

Block Header Content 2-36

3. SUPERVISORY MESSAGES 3-1

Message Mnemonics 3-1

Message Sequences 3-1

Connecting Devices to Applications 3-1

Connecting Applications to Applications 3-14

Monitoring Connections 3-24.1

Terminating Connections 3-24.2

Managing Connection Lists 3-25

Controlling List Polling 3-25

Controlling List Duplexing 3-26

Controlling Data Flow 3-29

Monitoring Downline Data 3-29

Controlling or Bypassing Upline and
Downline Data 3-35
Discarding Upline and Downline Data
on Application-to-Application
Connections 3-35

Discarding Downline Data on
Device-to-Application Connections 3-35

Bypassing Downline Data on an
Application-to-Application
Connection 3-35

Terminal Use of User Interrupts for
Priority Data 3-38

Controlling Upline Block Content 3-39

Converting and Repacking Data 3-39
Repacking Synchronous Supervisory
Message Blocks 3-41

Exchanging Transparent Data With Devices 3-42
Truncating Upline Blocks 3-42

Managing Device Characteristics 3-43

60499500 S ix

Changing Device Characteristics
Requesting Device Characteristics

Host Operator Commands
Host Shutdown
Error Reporting

4. USER PROGRAM INTERFACE DESCRIPTIONS

Language Interfaces
Parameter List and Calling Sequence

Requirements
Predefined Symbolic Names
Predefied Symbolic Values
COMPASS Assembler Language

Application Interface Program
Macro Call Formats

Field Access Utilities
Compiler-Level Languages

Application Interface Program
Subroutine Call Formats

Field Access Utilities
Queued Terminal Record Manager
Utilities

Internal Interfaces
Application Interface Program and
Network Interface Program Communication
Worklist Processing
Parallel Mode Operation

Other Software Communication

5. APPLICATION INTERFACE PROGRAM
CALL STATEMENTS

Syntax
Network Access Statements

Connecting to Network (NETON)
Disconnecting From Network (NETOFF)

Network Block Input/Output Statements
Specific Connections

Inputing to Single Buffer (NETGET)
Inputing to Fragmented Buffer
Array (NETGETF)

Outputing From Single Buffer (NETPUT)
Outputing From Fragmented Buffer
Array (NETPUTF)

Connections on Lists
Inputing to Single Buffer (NETGETL)
Inputing to Fragmented Buffer
Array (NETGTFL)

Processing Control Statements
Suspending Processing (NETWAIT)
Controlling Parallel Mode (NETSETP)
Checking Completion of Worklist
Processing (NETCHEK)

3-45 Debugging Application Programs 6-6

3-54 Fatal Errors 6-6

3-56 Debugging Methods 6-6

3-60 Debug Log File and Associated
3-60 Utilities

Statistical File and Associated
6-16

Utilities 6-15
4-1 Dependencies for Program Use 6-16

4-1
Memory Requirements 6-17

4-1
4-1
4-2

7. SAMPLE FORTRAN PROGRAM 7-1

Configuration Requirements 7-1
4-2 Job Command Portion 7-1

Program Portion 7-1
4-2 Program Output 7-1
4-10
4-11

8. QUEUED TERMINAL RECORD MANAGER 8-1
4-12
4-12 Network Information Table 8-1

Subroutines 8-11
4-13 Initiating Network Access (QTOPEN) 8-11
4-15 Sending Data (QTPUT)

Obtaining Data or Connection
8-12

4-15 Status (QTGET) 8-13
4-15 Sending a Synchronous Supervisory
4-16 Message (QTTIP) 8-14
4-16 Linking an Application to Another

5-1

5-1

5-1
5-1
5-4

5-4
5-4

5-4

5-6
5-7

5-8
5-10
5-10

5-12
5-14
5-14
5-15

5-16

6. CHARACTERISTICS OF AN APPLICATION PROGRAM 6-1

N0S System Control Point Facility 6-1
Batch Job Structure 6-1

Commands 6-2
Job Identification 6-3

Program Content 6-3
Program Execution Through IAF 6-3

Types of Application Programs 6-4
Disabled 6-5
Unique Identifier 6-5

Privileged 6-5
Request Startable 6-6
Have More Than One Copy (on any One Host) 6-6
Restricted or General Access 6-6
Mandatory or Primary 6-6

Application (QTLINK)
Ending a Single Connection (QTENDT)
Ending Communication With the

Network (QTCLOSE)
Output Formatting and Editing

Format Effectors
Display-Code Output Editing

Output Queuing Using QTRM
Sample Program

9. NETWORK FAILURE AND RECOVERY

Application Programs
Host
Network Processing Unit
Logical Link
Trunk
Line
Terminal

APPENDIXES

A Character Data Input , Output , and
Central Memory Representation

B Diagnostic Messages
C Glossary

8-14
8-14

8-15
8-15
8-16
8-16
8-16
8-18

9-1

9-1
9-1

9-1
9-1

9-1

9-1
9-1

A-l
B-l
C-l

D Application Program Call Statement Summary D-l

INDEX

FIGURES

1-1 Overview of a CDC Network 1-1

1-2 The Interfaces Between the Network
Product Elements 1-3

1-3 The Relationship Between the Parts of
the Communications Control Program 1-7

1-4 Typical Connections in the Network 1-10

60499500 S

1-5 Network Access Method Components
1-6 Typical Application Program

Processing Flow
2-1 Physical and Logical Information

Structures
2-2 Block Reassembly Points
2-3 Application-to-Application Connection

Data Exchanges
2-4 Application Block Header Content for

Upline Network Data Blocks
2-5 Application Block Header Content for

Downline Network Data Blocks
2-6 Supervisory Message General Content

,

Asynchronous Messages and Synchronous
Messages of Application Character

Type 2
2-7 Supervisory Message General Content,

Synchronous Messages of Application
Character Type 3

2-8 Application Block Header Content for

Upline Supervisory Messages
2-9 Application Block Header Content for

Downline Supervisory Messages
3-1 Supervisory Message Mnemonic Structure
3-2 Device-to-Application Connection

Supervisory Message Sequences
3-3 Connection-Request (CON/REQ/R)

Supervisory Message Format

,

Device-to-Application Connections
3-4 Connection-Accepted (CON/REQ/N)

Supervisory Message Format,
All Connection Types

3-5 Connection-Rejected (CON/REQ/A)

Supervisory Message Format,
All Connection Types

3-6 Initialized-Connection (FC/INIT/R)
Supervisory Message Format

3-7 Connection-Initialized (FC/INIT/N)
Supervisory Message Format

3-8 Connection-Broken (CON/CB/R)
Supervisory Message Format

3-9 End-Connection (CON/END/R)
Supervisory Message Format

3-10 Connection-Ended (CON/END/N)
Supervisory Message Format

3-11 Application-to-Application Connection
Supervisory Message Sequences

3-12 Request-Application-Connection
(CON/ACRQ/R) Supervisory Message
Format

3-13 Application-Connection-Rej ect
(CON/ACRQ/A) Supervisory Message
Format

3-14 Connection-Request (CON/REQ/R) Super-

visory Message Format, Application-
to-Application Connections

3-15 Connection Monitoring Message Sequences
3-16 Inactive-Connection (FC/INACT/R)

Supervisory Message Format
3-17 Connection Termination Message

Sequences
3-18 Connection List Polling Control

Message Sequences
3-19 Connection List Duplexing Message

Sequences
3-20 Turn-List-Processing-Off (LST/OFF/R)

Supervisory Message Format
3-21 Turn-List-Processing-On (LST/ON/R)

Supervisory Message Format
3-22 Change-Connection-List (LST/SWH/R)

Supervisory Message Format
3-23 Turn-On-Half-Duplex-List-Processing

(LST/HDX/R) Supervisory Message
Format

1-11 3-24

1-13

3-25
2-2
2-3 3-26

2-23 3-27

2-25 3-28

2-29 3-29

3-30
3-31

2-32
3-32

2-34 3-33

2-36
3-34

2-38
3-1 3-35

3-5 3-36

3-6 3-37

3-38
3-12

3-39

3-13
3-40

3-14
3-41

3-14
3-42

3-15
3-43

3-16
3-44

3-16
3-45

3-17
3-46

3-18

3-20

3-23
3-24.1

3-24.1

3-24.2

3-26

3-26

3-27

3-27

3-27

3-28

3-47

3-48

3-49

3-50

3-51

3-52

3-53

3-54

Turn-On-Full-Duplex-List-Processing
(LST/FDX/R) Supervisory Message

Format 3-29

Block-Delivered (FC/ACK/R) Supervisory
Message Format 3-30

Block-Not-Delivered (FC/NAK/R)

Supervisory Message Format 3-30

Application-to-Application Connection

Break and Reset Message Sequence 3-31

Break (FC/BRK/R) Supervisory Message
Format 3-32

Reset (FC/RST/R) Supervisory Message

Format 3-32

Terminal User-Caused Break Sequence 3-33

User-Interrupt (INTR/USR/R) Supervisory

Message Format 3-33

Break-Indication-Marker (BI/MARK/R)

Supervisory Message Format 3-34

Application-Interrupt-Response
(INTR/RSP/R) Supervisory Message
Format 3-34

Resume-Output-Marker (RO/MARK/R)
Supervisory Message Format 3-34

Application-Interrupt (INTR/APP/R)

Supervisory Message Format 3-36

Application-Interrupt-Response
(INTR/RSP/R) Supervisory Message
Format 3-36

Terminate-Output-Marker (TO/MARK/R)
Supervisory Message Format 3-37

Downline Data Flow Control Supervisory
Message Sequences 3-37

User-Interrupt-Request (INTR/USR/R)

Supervisory Message Format for
Priority Data 3-38

User Interrupt for Priority Data

Supervisory Message Sequence 3-38

Change-Input-Charac ter-Type
Supervisory Message Sequence 3-39

Change-Input-Character-Type (DC/CICT/R)
Supervisory Message Format 3-40

Block Truncation Supervisory Message
Sequence 3-42

Block Truncation (DC/TRU/R) Supervisory
Message Format 3-43

Terminal Characteristics Redefinition
Supervisory Message Sequences 3-45

Terminal-Characteristics-Redefined
(TCH/TCHAR/R) Supervisory Message
Format 3-46

Define-Terminal-Characteristics
(CTRL/DEF/R) Supervisory Message
Format 3-48

Define-Multiple-Terminal-Characteristics
(CTRL/CHAR/R) Supervisory Message
Format 3-49

Define-Multiple-Terminal-Characteristics
Abnormal Response (CTRL/CHAR/A)
Supervisory Message Format 3-50

Multiple-Terminal-Characteristics-
Defined (CTRL/CHAR/N) Supervisory
Message Format 3-50

Request-Terminal-Characteristics
(CTRL/RTC/R) Supervisory Message
Format 3-55

Request-Terminal-Characteristics
Abnormal Response (CTRL/RTC/A)
Supervisory Message Format 3-55

Device-Characteristics-Definition
(CTRL/TCD/R) Supervisory Message
Format 3-56

Host Operator Command Supervisory
Message Sequences 3-57

60499500 S

3-55 Host Operator Request-to-Activate-
Debug-Code (HOP/DB/R) Supervisory
Message Format 3-57

3-56 Host Operator Request-to-Turn-Off-
Debug-Code (HOP/DE/R) Supervisory
Message Format 3-58

3-57 Host Operator Request-to-Duap-Field-
Length (HOP/DU/R) Supervisory
Message Format 3-58

3-58 Host Operator Request-to-Turn^AIP-
Traffic-Logging-On (HOP/TRACE/R)
Supervisory Message Format 3-58

3-59 Host Operator Request-to-Turn-AIP-
Trafflc-Logging-Off (HOP/NOTR/R)
Supervisory Message Format 3-59

3-60 Host Operator Request-to-Release-
Debug-Log-File (HOP/REL/R)
Supervisory Message Format 3-59

3-61 Host Operator Request-to-Restart-
Statistics-Gathering (HOP/RS/R)
Supervisory Message Format 3-59

3-62 Host Shutdown Supervisory Message
Sequences 3-60

3-63 Host-Shutdown (SHUT/INSD/R) Supervisory
Message Format 3-61

3-64 Logical-Error Supervisory Message
Sequence 3-61

3-65 Logical-Error (ERR/LGL/R) Supervisory
Message Format 3-62

4-1 NFETCH Macro Call Format 4-10
4-2 NSTORE Macro Call Format 4-11
4-3 NFETCH Integer Function FORTRAN

Call Format 4-12
4-4 NSTORE Subroutine FORTRAN Call Format 4-13
4-5 QTRM Interface Level Analogy 4-14
5-1 NETON Statement FORTRAN Call Format 5-2

5-2 Supervisory Status Word Format 5-3
5-3 NETON Statement FORTRAN Example 5-3
5-4 NETOFF Statement FORTRAN Call Format 5-4

5-5 NETGET Statement FORTRAN Call Format 5-4
5-6 NETGET Statement FORTRAN 5 Examples 5-5

5-7 NETGETF Statement FORTRAN Call Format 5-6

5-8 NETGETF Statement Text Area Address
Array 5-7

5-9 NETGETF Statement FORTRAN 5 Examples 5-7

5-10 NETPUT Statement FORTRAN Call Format 5-8
5-11 NETPUT Statement FORTRAN 5 Example 5-8
5-12 NETPUTF Statement FORTRAN Call Format 5-9

5-13 NETPUTF Statement Text Area Address
Array 5-9

5-14 NETPUTF Statement FORTRAN 5 Example 5-10

5-15 NETGETL Statement FORTRAN Call Format 5-11
5-16 NETGETL Statement FORTRAN 5 Example 5-12
5-17 NETGTFL Statement FORTRAN Call Format 5-12

5-18 NETGTFL Statement Text Area Address
Array 5-13

5-19 NETGTFL Statement FORTRAN 5 Example 5-14

5-20 NETWAIT Statement FORTRAN Call Format 5-14
5-21 NETWAIT Statement FORTRAN 5 Examples 5-15
5-22 NETWAIT Statement FORTRAN Call Format 5-15
5-23 NETSETP and NETCHEK Statement

FORTRAN 5 Examples 5-16
5-24 NETCHEK Statement FORTRAN Call Format 5-17
6-1 Typical Job Structure for System Input 6-2
6-2 Interactive Program Execution Procedure

Example 6-3

6-3 NETDBG Utility FORTRAN Call Statement
Format

6-4 NETREL Utility FORTRAN Call Statement

Format
6-5 NETSETF Utility FORTRAN Call Statement

Format
6-6 NETL0G Utility FORTRAN Call Statement

Format
6-7 NETDMB Utility FORTRAN Call Statement

Format
6-8 DLFP Command General Format
6-9 DLFP Command Examples
6-10 DLFP Directive Keyword Format
6-11 DLFP Directive Examples
6-12 General Format of DLFP Output
6-13 NETSTC Utility FORTRAN Call Statement

Format
6-14 NETLGS Utility FORTRAN Call Statement

Format
6-15 General Format of One Period Listing

in Statistical File
7-1 Command Portion of RMV3 Job
7-2 Program Portion of RMV3
7-3 Possible Dialogs Supported by Sample

FORTRAN Program
7-4 Debug Log File Listing for Sample

FORTRAN Program
7-5 Statistical File Listing for Sample

FORTRAN Program
8-1 Network Information Table Format
8-2 QTOFEN Statement COBOL Call Format
8-3 QTFUT Statement COBOL Call Format
8-4 QTGET Statement COBOL Call Format
8-5 QTLINK Statement COBOL Call Format
8-6 QTENDT Statement COBOL Call Format
8-7 QTCLOSE Statement COBOL Call Format
8-8 Algorithm for Output Buffering

Using QTRM
8-9 Sample Program ECH0-RMV2 Source

Listing
8-10 ECHO-RMV2 Job Commands
8-11 Debug Log File Listing for ECHO-RMV2
8-12 Statistics File Listing for ECHO-RMV-2
8-13 ECH0-RMV2 Sample Dialog

TABLES

1-1 Device Types
1-2 Supported Terminal Classes
2-1 Default Message Delimiter and

Transmission Keys
2-2 Format Effector Operations for

Asynchronous and X. 25 Consoles
2-3 Format Effector Operations for

Synchronous Consoles
2-4 Embedded Format Control Operations

for Consoles
2-5 Character Exchanges With Connections
3-1 Legal Supervisory Messages
3-2 Valid Field Numbers and Field Values
4-1 Reserved Symbols
4-2 AIP Internal Procedures
4-3 AIP Internal Tables and Blocks

6-7

6-8

6-8

6-9

6-9
6-10
6-10
6-11
6-12
6-13

6-15

6-15

6-16
7-1

7-2

7-25

7-26

7-38
8-2

8-11
8-12
8-13
8-14
8-14
8-15

8-17

8-19
8-25
8-26
8-36
8-37

1-9

1-14

2-6

2-15

2-20

2-21

2-25

3-2

3-51
4-3

4-17
4-18

| xii 60499500 S

NOTATIONS

Throughout this manual, the following conventions

are used in the presentation of statement formats,

operator type-ins, and diagnostic messages:

UPPERCASE

lowercase

[]

{ }

input parameter

return parameter

Uppercase letters indicate
acronyms, words, or mne-
monics either required by

the network software as
input, or produced as out-

put.

Lowercase letters identify
variables for which values
are supplied by the HAM or
terminal user, or by the

network software as output.

Ellipsis indicates that

omitted entities repeat the

form and function of the
entity last given.

Square brackets enclose
entities that are optional;

if omission of any entity
causes the use of a default
entity, the default is

underlined.

Braces enclose entities from
which one must be chosen.

This term identifies an AIP

call statement parameter for
which values are supplied
to AIP by the programmer.

This term identifies an AIP
call statement parameter
for which variables are
supplied to AIP by the pro-
grammer and in which values
are placed by AIP.

<ct> The <ct> symbol represents
|

the network control char-
acter defined for the ter-
minal. This character must
be the first character of
the command entered.

LF The LF symbol represents a
one-line vertical reposi-
tioning of the cursor or
output mechanism. LF also
designates a character or

character code associated
with such a line feed
operation.

© A circle around a character
represents a character key
that is pressed in con-
junction with a control

key (CTL, CNTRL, CONTRL,
CONTROL, or equivalent).

|cr| The boxed cr symbol repre-
sents the terminal key that

causes message transmission;
usually, this key causes a
carriage return operation.

Transmission keys are
described in more detail in

section 2.

Unless otherwise specified, all references to num-

bers are to decimal values, all references to bytes

are to 8-bit bytes, and all references to characters

are to 7-bit ASCII-coded characters. Fields
defined as unused should not be assumed to contain

zeros.

60499500 R xiii

NETWORK PRODUCTS: AN OVERVIEW

This section Introduces the Control Data Corporation
CYBER 170 network products, their relationships to

each other, and their significance to the data com-
munications user. Network products is a group of

programs and hardware that provides communications
services to geographically dispersed users.

As shown in figure 1-1, a CDC network consists of a
computer network, a communications network, and a

services network.

COMPUTER NETWORK
The computer network includes host computer systems
packet-switching networks (PSNs), terminals, and
the host software associated with network communi-
cations.

Each component of the computer network provides
input, output, control, or storage resources to the
services and communications network. The primary
host communication software is called the Network
Access Method (NAM).

Services
Network

Computer
Network

Communications
Network

Terminals P

Users

V.

Figure 1-1. Overview of a CDC Network

60499500 R 1-1 •

COMMUNICATIONS NETWORK
The communications network includes network proc-
essing units (NPUs) and the connecting communication
lines needed to transport blocks of data between
host computers and terminals. The primary CDC
software in an NPU is called the Communications
Control Program (CCP).

The size and complexity of a communications network
varies from a simple network with one local (front-
end) NPU, or a network with one local NPU and one
or more remote NPUs, to a more complex network with
multiple local NPUs and multiple remote NPUs.
Attached to these NPUs are terminal devices, such
as entry/display stations.

Because the communications network minimizes termi-
nal type dependency and removes many of the terminal
switching operations from the host, the host can
process data more efficiently.

SERVICES NETWORK
The services network consists of the network appli-
cation programs in each host computer and the users
of those programs. Each application program gives
the terminal user or another application a specific
data processing capability.

SOFTWARE COMPONENTS OF
THE NETWORK

Figure 1-2 shows the interfaces between the elements
of the network. The left part of the figure shows
the network host software elements, which are the
software elements located in the CDC CYBER 170 host
computer. The middle section shows the Communi-
cations Control Program (CCP), which is the software
element located in the network processing unit. As
shown in the right portion of figure 1-2, CCP
communicates with the terminals while the Network
Access Method (NAM) communicates with application
programs. Refer to figure 1-2 while reading the
remainder of this overview section on network
products

.

The network host software is collectively called
the Network Access Method or NAM. NAM is used in
several contexts throughout this manual and in the
other network products documentation. NAM can refer
to the interface between application programs and
the communications network; to the programs that
implement that interface, including the Applications
Interface Program (AIP), the Network Interface
Program (NIP), and the Peripheral Interface Program
(PIP); or to the product NAM, which also includes
the Network Supervisor (NS), the Communications
Supervisor (CS), and the Network Validation Facility
(NVF).

In figure 1-2, NAM refers to the set of programs
that implement the interface between the application
programs and communications network.

Network host software, shown in the left part of
figure 1-2, includes:

Network Access Method

Network Definition Language Processor

Network Supervisor

Communications Supervisor

Network Validation Facility

Network utilities

Network Access Method application programs

CYBER Cross System

NETWORK ACCESS METHOD

The Network Access Method is the primary network
host software. NAM interfaces between applications
in the same host or between applications and the
Communications Control Program in an NPU.

Because the connections among NPUs can become
extremely complex, the Network Access Method acts
as an interface between host computer software at
one end of the network and the terminals at the
other end.

A simple front-end NPU configuration appears the
same through the Network Access Method as a more
complex linkage system; message routing by the host
computer is performed in the same manner for both
configurations. The physical and logical configu-
ration of the elements involved in Network Access
Method operation is described in the Network Defi-
nition Language reference manual (listed in the
preface).

The host computer executes CDC-written or site-
written service programs called application programs
that are connected to the network via the Network
Access Method (NAM). An application program can
communicate with other application programs or
service terminals connected to the network. All
connections to the network are established by a
portion of the network software called the Network
Validation Facility, and the flow of data and proc-
essing along them is controlled through NAM.

NAM incorporates the following features:

• It is equally suitable for application programs
written in COMPASS or high-level languages, such
as FORTRAN.

• It imposes no data structures on an application
program.

• It provides a way to handle unpredictable
events, such as terminal operator interrupts.

• It provides complete isolation of network com-
munications from the operating system.

• It supports distinct classes of terminals by
normalizing data formats and optionally per-
forming code conversion. Seventeen classes are
defined by CDC; additional classes can be de-
fined by sites that provide their own supporting
software.

• It permits an application program to support
clusters of real terminal devices as if the
devices were separately addressable logical
entities called virtual terminals. Virtual
terminals are described at the end of this
section.

• 1-2 60499500 R

s

>a

oo

Network Host Software Communications
Control Program

Terminals

CYBER Cross System

Terminal

Figure 1-2. The Interfaces Between the Network Product Elements

i

Basic services provided by NAM include:

• NAM establishes message paths (logical con-
nections) between an application program and
terminals or between two applications (provided
both parties have the correct network access
security permissions).

• NAM breaks logical connections when asked to by
the application program or the terminal, or when
network conditions make it necessary (for ex-
ample, when a network shutdown occurs).

• After logical connections have been established,
NAM passes incoming messages to the application,
and accepts and forwards outgoing messages from
the application.

• NAM queues incoming messages until the appli-
cation program requests them. This allows the
application to service its connections with
terminals and other applications in any desired
order.

• NAM provides the application program with its
own set of protocols, making knowledge of de-
tailed network protocols unnecessary.

• For incoming traffic, NAM allows the application
program to group terminals with similar or re-
lated processing needs.

• NAM queues outgoing messages to regulate data
flow through the network.

• NAM detects inactivity on any Interactive data
path and reports the condition to the appli-
cation program.

• NAM resolves resource contention among appli-
cation programs.

An installation option is available to log message
traffic for application program debugging. A second
installation option permits the logging of appli-
cation program and message traffic statistics.

NAM consists of four major modules:

Peripheral Interface Program

Network Interface Program

Application Interface Program

Queued Terminal Record Manager

Peripheral Interface Program

The Peripheral Interface Program (PIP) is a periph-
eral processor unit program that interfaces the
central processor executed routines of NAM to the
channel-connected local NPUs.

PIP moves blocks of data between the central memory
buffers of NAM and the NPU and reads and writes disk

| files used by batch devices or for file transfer.
PIP also can detect when a local NPU needs initial-
izing. If the NPU cannot start its own loading,
PIP requests the network supervisor to load the
bootstrap program into the NPU.

Network Interface Program

The Network Interface Program (NIP) executes as a

system control point. NIP coordinates the use of
the communications network by all application pro-
grams, buffers data between the application programs
and the network, and manages the logical connec-
tions.

Each application program can have several connec-
tions; each connection is associated with a terminal
device or with another application program. NIP
translates between network addresses and the more
convenient logical addresses that represent the
connection to the application. NIP also establishes
new connections as they are requested and terminates
connections that are no longer needed or that have
failed.

An application can request NAM to convert the data
on a logical connection from the network format.
Such conversions determine the format and encoding
of characters seen by the application.

Application Interface Program

The Application Interface Program (AIP) is a set of
subprograms and buffers that resides in the appli-
cation program's field length and provides an
interface to NIP and the network. This manual is
primarily concerned with the use of AIP.

AIP statements are provided so that the application
program can connect to and disconnect from the net-
work. AIP statements also control information
exchange between the application program and NAM
buffers. This information can be data, or it can
be supervisory messages that coordinate the appli-
cation's execution with events that have occurred
in the network. NAM might pass a supervisory mes-
sage to inform the application of a new connection
that is requesting service, or that a failure has
occurred. In the same way, the application program
uses supervisory messages to communicate with NAM
and the network elements.

Queued Terminal Record Manager

The Queued Terminal Record Manager (QTRM) is a set
of subprograms that resides in the application pro-
gram's field length and provides a high level pro-
cedural interface to the network. This package
permits indirect use of a subset of AIP's features
by programs with unsophisticated communications
requirements. This utility permits programs to
have a communications interface functionally similar
to their mass storage interface. QTRM is discussed
in section 8 of this book.

NETWORK DEFINITION LANGUAGE
PROCESSOR

Before the network software can route data through
the network and interface to operators for super-
vision, the definition of the network configuation
must first be communicated to the software. The
Network Definition Language (NDL) is used to de-
scribe this configuration. The Network Definition
Language processor (NDLP), a batch utility, trans-
lates this configuration and prepares a network
configuration file (NCF) and a local configuration
file (LCF).

1-4 60499500 S

The NCF contains configuration information required
by the network.

The LCF contains host information required by the
Network Validation Facility, such as automatic login

parameters and application information. The LCF

allows the network validation facility to validate
and connect terminals to applications or appli-

cations to applications.

The NDL is described in the Network Definition
Language reference manual listed in the preface.

NETWORK SUPERVISOR

The Network Supervisor (NS) executes as a NAM
application. It interfaces between the NPOs and
CCP program files in the host. NS loads an NPU on
request with the appropriate copy of the Communi-
cations Control Program from the host's network
load file (NLF). NS also saves NPU dumps in the

host's network dump file (NDF). The load and dump
files are shown in figure 1-2.

The host operator can obtain status information for
NPU loading or dumping operations involving the

copy of NS in the operator's host. More than one
host can run a copy of NS; so that NS can load NPUs
which are not accessible from a specific host.

COMMUNICATION SUPERVISOR

The Communication Supervisor (CS) program executes
as a NAM application. It can communicate with the
network operators (NOP) . CS allows a network
operator at a terminal (an NPU operator or a diag-
nostic operator [DOP]) or at a host console (a host
operator [HOP]) to obtain and change the status of
network elements under its supervision, to communi-
cate with users at terminals , and to run diagnos-
tics . CS also responds to requests for network
configuration data from an NPU.

CS can run in one or more hosts. It also assists
| the NPUs by providing them with terminal configura-

tion information from the network configuration
file.

NETWORK VALIDATION FACILITY

The Network Validation Facility (NVF) also executes
as a NAM application. It validates the terminal
user's access to the host and an application pro-
gram's access to the computer network. NVF also
maintains and reports application status to the
host operator (HOP). As figure 1-2 shows, the NOS
validation file and the local configuration file
(LCF) supply validation information to NVF.

NVF verifies such terminal user information as
family name, user name, and password. Before a
terminal user can access an application program,

| successful login must occur. When login is

successfully completed, the Network Validation
Facility causes NAM to notify the application
program identified in the login sequence that a

terminal requests connection.

The Network Validation Facility also performs

switching between application programs. NVF causes

terminal disconnection processing when disconnection

is appropriate.

The Network Validation Facility controls application

program and terminal access to the network, as

follows:

• An application program wishing to communicate
with terminals requests access to the network.

This request is passed by NAM to the NVF for

validation. (NVF also performs similar vali-
dation of terminal requests for host access.)

Once NVF has determined that an application
program or terminal is allowed to use the host's
resources, it makes calls to NAM that create

the logical connection for the transfer of data
between the application program and the network.
NVF also requests NAM to modify or delete these

connections when terminal users request to com-
municate with other application programs or

leave the network.

• When an application program no longer desires
to use the network, it calls another NAM pro-

cedure. This request also is passed to NVF,

which causes NAM to delete all connections used
for the application program - just as it does

for a terminal or terminal device leaving the

network

.

NETWORK UTILITIES

Four utility programs either are included with or

used by network host products:

The Network Dump Analyzer (NDA)

The Load File Generator (LFG)

The Debug Log File Processor (DLFP)

The Hardware Performance Analyzer (HPA)

Network Dump Analyzer

The network dump analyzer (NDA) produces a formatted

printout from NPU dump files created by the Network
Supervisor. The site analyst can use these dumps
to help analyze CCP software or NPU hardware fail-

ures. The network dump analyzer uses the network
dump file (NDF), which is shown in figure 1-2, as
input

.

You can find more information about the NPU dump
analyzer in the NOS Version 2 Analysis Handbook |
listed in the preface.

Load File Generator

The load file generator (LFG) reformats CCP program
files produced by the CDC CYBER Cross System's link

and edit programs into a single random access file
used by the Network Supervisor to load NPUs . This
file is the network load file (NLF), which is one
of the NPU files shown in figure 1-2.

You can find more information about the load file
generator in the NOS Installation Handbook listed
in the preface.

60499500 S 1-5

Debug Log File Processor

The debug log file processor (DLFP) converts the

debug log file generated by the Application Inter-
face Program into a printable report. The program-

mer can selectively list logged information through
DLFP directives.

You can find more information about the debug log
file processor in section 6 of this manual.

CDC CYBER CROSS SYSTEM SOFTWARE

The CDC CYBER Cross System software allows you to

install, modify, and maintain the CCP software. It

is composed of these programs:

PASCAL, which is a compiler patterned after
ALGOL-60. By using PASCAL, you can define tasks

in statements that are processed by the compiler
to yield a variable number of actual program
instructions.

Hardware Performance Analyzer

A fourth utility program, the hardware performance
analyzer (HPA) , is part of the NOS operating system.
This utility program produces reports from infor-
mation on the account and error log dayfiles.
Network products software makes statistical, error,
and alarm message entries into these dayfiles.

You can find more information about the hardware
performance analyzer in the HPA reference manual
listed in the preface.

NAM APPLICATION PROGRAMS

The host computer executes CDC-written or site-
written service programs called application programs
that are connected to the network through NAM. An
application program can communicate with other
application programs or terminals connected to the
network.

The CDC-provided NAM application programs are:

Interactive Facility (IAF), which allows you to
create files and to create or execute programs
from a device without using card readers or line
printers. IAF is described in Volumes 1 and 3

of the NOS 2 Reference Set.

Formatter, which reformats PASCAL output into
an object code format compatible with the com-
munications processor macro assembler output

Macro Assembler, which assembles communications
processor macro memory source programs and
produces relocatable binary output. The source
programs are written with symbolic machine,

pseudo, and macro instructions.

Micro Assembler, which provides the language

needed to write a micro memory program. This

assembler translates symbolic source program
instructions into object machine instructions.

Link Editor, which accepts object program mod-
ules and generates a memory image, suitable for
executing in the 255x NPU.

Autolink utility, which simplifies program
assignment and maximizes the amount of space
assigned to handling buffers.

Expand utility, which includes several hardware
and software variables used to define a CCP load
file for a given NPU configuration.

See the preface for manuals that contain more
information on the CDC CYBER Cross System.

Remote Batch Facility (RBF) , which permits you
to enter a job file from a remote card reader
and to receive job output at a remote batch
device. RBF is described in the Remote Batch
Facility reference manual.

Transaction Facility (TAF), which permits you
to implement on-line transaction processing
under NOS by writing programs to be used by
terminals. TAF is described in the TAF
reference manual

.

Terminal Verification Facility (TVF), which
provides tests you can use to verify that an
interactive console is sending and receiving
data correctly. TVF is discussed in the Ter-
minal Interfaces reference manual.

Message Control System (MCS) , which allows you
to queue, route, and journal messages between
COBOL programs and terminals . MCS is described
in the Message Control System reference manual

.

The queue file transfer facility (QTF), which
allows you to transfer queue files between
hosts. The use of this feature is described in
the NOS Version 1 Reference Set, Volume 3.

Permanent File Transfer Facility (PTF), which
allows you to transfer permanent files between
waits. The use of this feature is documented
in the NOS Version 2 Reference Set, Volume 3.

NETWORK PROCESSING UNIT
AND COMMUNICATIONS
CONTROL PROGRAM
This subsection discusses the following network
products, which are part of the communications
network and allow a terminal to access the host
computer over communication lines:

The 255x series network processing unit (NPU),
which connects a host to a terminal

The Communications Control Program (CCP), which
is the software in the NPU

The middle portion of figure 1-2 shows the communi-
cations network.

NETWORK PROCESSING UNIT

An NPU handles front-end or remote data communica-
tions for the CDC CYBER 170 host. The Communica-
tions Control Program resides within the NPU.

To understand CCP, you must have a basic under-
standing of the hardware on which CCP runs. Refer
to the hardware manuals listed in the preface for a
description of the hardware components of the NPU.

1-6 60499500 S

COMMUNICATIONS CONTROL PROGRAM

The Communications Control Program, which is the

software that executes in the 255x NPUs, consists

of:

Base system software

System autostart module program (SAM-P)

Service module (SVM)

HoBt Interface Program (HIP)

Terminal Interface Programs (TIPs)

Link Interface Program (LIP)

Block Interface Program (BIP)

In-line and on-line diagnostics

NPU console debugging aids

Performance and statistics programs

Figure 1-3 shows how the major parts of CCP relate

to each other.

Base System Software

The base system software executes programs, allo-

cates buffers, handles interrupts, and supports

timing and data structures. It includes:

A system monitor, which controls the allocation

of resources for the communications processor

Timing services, which run those programs or

functions that are executed either periodically

or following a specific time lapse for the

processor

A multiplex subsystem, which interfaces with

the 255x multiplexing hardware and performs

character-by-character processing of tasks

Interrupt handler, which controls the transi-

tion of the communications processor between

different program interrupt levels

Initialization, which prepares the network for

on-line operation

Structure services, which build and maintain

internal tables used for routing data

Buffer maintenance, which dynamically allocates

memory in multiple buffer sizes for efficient

memory use

Worklist services, which provide logic for 255x

interprogram communication through the use of

worklists

Standard subroutines, which provide support

routines to handle arithmetic conversion, main-

tain page registers, and do miscellaneous tasks

System Autostart Module

The system autostart module is an optional set of

hardware and software that begins the loading of

other CCP software from a host.

Host

cO>

Cassette
Unit

Terminals

Figure 1-3. The Relationship Between the Parts of the

Communications Control Program

60499500 S
1-7 |

Service Module

The service nodule (SVM) includes network control
functions and interface programs that provide a
common link to other elements of the communications
network. These programs:

Process commands from the host, called service
messages

Control line and terminal configuration

Report and respond to regulation and supervision
changes

Host Interface Program

The Host Interface Program (HIP) provides the soft-
ware that links the host and a local NPU over a
channel. The HIP drives the CDC CYBER channel
coupler, transfers data, checks for errors, and
monitors for host failure and recovery.

Terminal Interface Program

The Terminal Interface Program (TIP) is a modular
program that provides protocol support and the con-
trol needed to interchange data between a terminal
and other elements of CCP.

The TIP transforms application program data between
its virtual terminal format and the format required
by the transmission protocol and physical charac-
teristics of the real terminals. CDC provides TIPs
for these transmission protocols:

• Asynchronous communication lines

• Synchronous communication lines for mode 4
terminals

• Bisynchronous communication lines for terminals
emulating the IBM HASP protocol

• X.25 packet and link level interfaces to a
packet-switching network (PSN) via high-level
data link control (HDLC) synchronous lines

• Bisynchronous communications lines for terminals
emulating the IBM 2780/3780 protocol

3270 Bisynchronous communications (BSC)
ating as multipoint data links

oper-

Eighteen classes of real terminals using these
protocols are supported. Each terminal class has
certain physical characteristics associated with
it. These associated characteristics are determined
by a terminal chosen as the archetype for the class,
but can be changed by either the application pro-
gram or the terminal operator. The terminal class
initially used for a given real terminal is deter-
mined by the way the terminal is configured in the
network configuration file; the network configura-
tion file can also be used to change the character-
istics initially associated with the terminal from
those of the archetype terminal. The association
of characteristics with a terminal is referred to
in networks documentation as terminal definition or
TERMDEF.

The terminal classes and archetype terminals for
each class are listed at the end of this section.

This list includes only elements supported by re-
leased versions of standard CDC network software.

Sites can add site-written Terminal Interface Pro-
grams to extend CDC support to additional transmis-
sion protocols and terminal classes. This manual
is concerned only with the transmission protocols
and terminal classes supported by CDC. Information
in this manual is valid for sites using extensions
to CCP only to the extent that those modifications
emulate the CDC-supported release version of CCP.

Link Interface Program

The Link Interface Program (LIP) transfers infor-
mation over a trunk between NPDs.

Block Interface Program

The Block Interface Program (BIP) routes blocks of
data, processes service messages, and processes the
network block protocol.

In-Line and On-Line Diagnostics

In-line and on-line diagnostics, which are produced
for the NPU, enable a NOP to isolate communications
line problems. Alarm, CE error, and statistics
service messages are the types of in-line diag-
nostics. In-line diagnostics are generated auto-
matically. On-line diagnostics must be requested
from the NOP console.

NPU Contole Debugging Aids

Debug aids provide test utilities for debugging
programs, taking memory snapshots, and dumping the
NPU during CCP program development or system I
failures

.

Performance and Statistics Programs

These programs gather statistics on NPU and indi-
vidual line performance, and periodically dispatch
theses statistics to the Communications Supervisor.

THE PACKET SWITCHING
NETWORK (PSN)

The packet switching network (PSN) is a value added
network you may subscribe to either from a CDC or a
foreign vendor who supports the X.25 CCITT recom-
mendation (1980). Such networks are alternately
referred to as public data networks (PDNs).

NAM CONCEPTS
NAM is used by both application programs and por-
tions of the network software. The features of NAM
permit programs to be written for the following
types of communication applications

:

• Time-sharing communication services. A single
program provides this service when it interacts
with each terminal during a given time period. |
The CDC-written Interactive Facility is an
example of this type of application program.

1-8
60499500 S

Transaction communication services. A single

program provides this service when it creates a

multi-threading interface for many terminals

using many task routines. Each terminal can

interact with many tasks or programs through
queues maintained by the program providing the

transaction service. The CDC-written Trans-
action Facility is an example of this type of

application program.

Teleprocessing communication services. A
single program provides this service when it

Interacts with many terminals to perform a
single teleprocessing task for each. No task
queues are required. The CDC-written Terminal
Verification Facility is an example of this

type of application program.

The interactive virtual terminal concept makes it

unnecessary for an application programmer to provide
separate procedures to support differing implemen-
tations of one function on a variety of real ter-
minals .

Any console or site-defined device (any device with
a device type of or 12) can be serviced as an
interactive virtual terminal. An interactive
virtual terminal has an input and output device
which sends and receives logical lines of ASCII

characters. These logical lines are transformed
into or from physical lines of characters of the

code set appropriate for the real terminal. This

transformation is performed for the application
program by the Communications Control Program of

the network processing unit servicing the real
terminal.

VIRTUAL TERMINALS

The virtual terminal concept simplifies the proce-
dure an application program must perform to service

a terminal.

Device types are used in a request for connection
from a terminal to an application (see section 3

for a discussion of connection processing). Device
types currently defined are listed in table 1-1.

TABLE 1-1. DEVICE TYPES

Device Type Terminal Device Defined

Console (interactive device)

it Card reader (passive device)

2t Line printer, impact printer
or nonimpact printer (passive

device)

3t Card punch (passive device)

«t Plotter (passive device)

5 Another application program in

the same host

6 Another application program in

a different host

7 thru 11 Reserved for CDC use

12 Site-defined device

'Reserved for RBF use.

Every terminal device is either an interactive
device (capable of both input and output) or a
batch device (capable of either input or output).

Because this is true of all physical terminals,
certain functions of each terminal device type can

be abstracted and treated in a similar manner for
all terminals with devices of that type. These

common functions constitute a virtual terminal.

All references to terminals in this manual are to

virtual terminals, unless otherwise specified.

Real terminals can perform a wide variety of

functions, but not all terminals can perform the

same functions. The functions performed by an
interactive virtual terminal are restricted to the
subset of terminal functions that is common to all

real interactive terminals. This restriction
ensures efficient virtual terminal operation when
the corresponding real terminal has the fewest
capabilities.

When the application program must support functions
for a real terminal that are not available through
the interactive virtual terminal interface, the
application program can:

• Embed control characters in the output text or

scan for control characters in the input text.

The application program must allow for control
characters significant to or transformed by the
network software in this instance.

• Transfer data to and from the terminal in

transparent mode. In transparent mode, all

transformations are inhibited and the appli-
cation program has direct access to and re-
sponsibility for support of all real terminal

functions. Transparent mode can be selected

separately for input and output to the same
virtual terminal.

Control characters and transparent mode are discus-

sed in detail in section 2.

Logical lines that exceed the physical line length
of the real terminal are folded into two or more
physical lines on output to the terminal. The
spacing of output lines can also be controlled with
optional format effectors, described in section 2.

Optional paging of output is possible, to avoid
overwriting previous output until the previous out-

put is acknowledged by the terminal operator.

LOGICAL CONNECTIONS

Just as the virtual terminal concept simplifies

terminal servicing, the logical connection concept
simplifies terminal addressing. In the network,
when data passes between a virtual terminal and an
application program, a message path or logical con-
nection exists between the two. Conceptually, this

is equivalent to the connection between two tele-
phones used in a conversation. After a real termi-

nal has gained network access, NAM logically con-
nects each virtual terminal portion of it to one,

60499500 R 1-9 •

and only one, application program at a time, al-
though the virtual terminal can be switched from
application to application as needed.

An application program, however, can be connected
simultaneously to many virtual terminals. It is

connected to each one by a separate and distinct
logical connection. The application program ident-
ifies a particular terminal by specifying the

logical connection between itself and the terminal.

This is possible because a one-to-one association
exists between the connection and the terminal.

From the application programmer's point of view, it

is convenient to talk of connection x (literally,

message path x) when it would be more precise to

say the virtual terminal at the other end of con-

nection x.

An application program can also form a logical

connection with one or more other applications and,

in fact, can have several connections with another
application program simultaneously, using separate
and distinct logical connections. A logical con-
nection can, therefore, refer to either a terminal
or to another application. This manual uses the

term connection to cover both possibilities.
Typical logical connections in the network are shown

in figure 1-4.

OWNING CONSOLES

Passive devices are serviced on separate logical
connections from their corresponding Interactive

consoles. Because of this, a mechanism is needed
to associate a passive device with the console that
enters controlling information for it. The mecha-
nism used is the owning console concept.

When a passive device is defined in the network
configuration file, an interactive console is

identified as the owning console of the passive
device. The method used identifies the console by

its terminal name, as defined for the console in
the network configuration file. An application
program receives the name of the owning console as

a parameter in the passive device's connection
request, along with the terminal name of the pas-
sive device. The application program also receives
the terminal name of the console as part of the

console's connection request, and can therefore
associate the two devices.

NETWORK ACCESS METHOD
OPERATION
Figure 1-5 shows the components of NAM as it is

discussed in this manual. All of the area enclosed
by the dotted lines comprises the Network Access
Method.

As NAM receives data from the network terminals or

application programs, the data is buffered in NAM's
buffers. (See section 4.) Application programs
use calls to A1P procedures to request and transmit

this data.

Host Computer 1

Application
Program

A

connection
1

Application
Program

B

connection
3

connection
2

connection
1

connection
2

Network Access Method

Host Computer 2

Application
Program

C

connection
1

connection
2

Network
Access
Method

Data Communications
Network

Device
a

Device
b

Terminal Terminal

Figure 1-4. Typical Connections in the Network

• 1-10 60499500 R

Network
Supervisor*

Communications
Supervisor*

Interactive
Facility*

Operating
System Queue

and Permanent
Files

Remote
Batch
Facilityt

Transaction
Facilityt

NOS VALIDUs
and Local

Configuration
Files

Network
Validation
Facilityt

User-written
Application

Program

Terminal
Verification

Facility

COBOL 5

Program
Message
Queues

Message
Control
Systemt

PLATO
Network
Interface

User-written
Application

Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Application
Interface
Program

Network
Interface
Program

Peripheral
Interface
Program
~>»

Network
Access
Method

Queued Application
Terminal I Interface
Record | Program

Manager j

NPU

Network
and
Terminals

'Privileged application programs; see Section 6

Figure 1-5. Network Access Method Components

60499500 S 1-11

Inbound data from an interactive virtual terminal
or another application is placed, unmodified, in
NIP's central memory buffers by PIP. These buffers
form an input queue associated with the logical
connection that originated the data. Data is
removed from this input queue when application pro-
gram AIP statements request input from the logical
connection. The data can be translated and con-
verted by NIP from ASCII to display code if the
application program has requested such conversion;
transparent data, as described In section 2, is
neither edited nor translated. NIP places the
translated or transparent data in a data buffer
within the application program's field length.
This data buffer Is established and maintained by
the application program.

Output for an interactive virtual terminal or
another application is handled in the reverse
manner. The application program calls an AIP pro-
cedure to send data on a logical connection. The
data is transferred from the program's field length
to an output queue within NIP's field length. From
there, it is placed in one of PIP's output buffers,
according to its priority as a supervisory message,
low priority data, or high priority data, and to
its destination. Code conversion and translation,
if necessary, is done by PIP.

The files shown in figure 1-5 are maintained by
code independent of NAM. Named files in the figure
are discussed briefly in various portions of this
manual

.

APPLICATION PROGRAM CONCEPTS

NAM requires an application program to reside at a
separate operating system control point. This
program contains calls to the AIP routines listed
in appendix D and described in sections 5 and 7.
These calls can be direct, or indirect through the
Queued Terminal Record Manager.

An application program begins accessing the network
by calling NETON. It transmits data through the
network by calling NETPUT or NETPUTF. It receives
data through the network by calling NETGET, NETGETL,
NETGETF, or NETGTFL.

An application program must contain buffers for
transmitted or received data. These buffers can be
either unified or fragmented central memory areas.
One buffer can be used for all logical connections,
or many unified buffers or fragments of a buffer
can be used for each logical connection.

An application program sends instructions to the
network software and receives operational infor-
mation from the network software through supervisory
messages, as described in section 3. It must
contain procedures to formulate or process these
messages.

An application program can contain procedures that
optimize its use of central memory and the control
processor. AIP routines can make the program avail-

able for rollout when the program has no data to
process (NETWAIT) , or allow the program to perform
non network processing while waiting for completion
of a network processing task (NETSETP and NETCHEK)

.

An application program can compile statistics about
its functioning (NETSTC) that can be examined for I
application tuning. It can also cause trace dumps I
of its network traffic (NETDBG) . The trace file
generated can be dynamically disposed for storage,
processing (NETREL), and application debugging. |

An application program must contain a call to NETOFF
to terminate its access to the network. Application
programs using the optional code controlled by
NETDBG or NETSTC must also dispose of the local
files created by this code. (See section 6.)

CONNECTION PROCESSING FLOW

The functions performed by NAM and other software
described previously in this section can best be
summarized by tracing the job processing involved
for a single terminal and a single site-written
application program. Figure 1-6 is a generalized
version of this processing flow. Time elapses in
the figure from top to bottom. Program processing
begins from the left, terminal actions begin from
the right. Dotted lines separate functions for
each entity. When the boxes formed by solid or
dotted lines are aligned, the functions of the
entities involved are related. Actions for a batch
device (a passive device) differ from those shown
for an interactive terminal; the first two and last
three terminal actions are performed internally by
the Network Validation Facility for batch devices
based upon login information supplied for the
device's owning console.

SUPPORTED TERMINALS
The network software, and therefore an application
program, can service any real terminal compatible
with one of the terminal classes listed in table
1-2. Each terminal class is identified by its
terminal class number, described in section 3 under
Managing Logical Connections. All terminal classes
are supported by the interactive virtual terminal
interface. When a mnemonic appears in table 1-2,
It indicates the archetype terminal supported for
the given terminal class and device type.

The archetype mnemonics are not used by the appli-
cation program in any form; the archetypes are
described in more detail in the Network Definition
Language reference manual, where they are identified
by the same mnemonics. (See the preface.)

Site-modified versions of the network software can
service terminals in terminal classes other than
those listed. This manual applies only to support
of the terminal classes defined by CDC. Content of
this manual can be valid for site-defined terminal
classes; CDC is not responsible for deviations from
this manual attributable to support of site-defined
terminal classes.

1-12
60499500 S

Application
Program AIP NVF NIP PIP

Terminal
Interface
Program Terminal

Connect to

network

. HHI HHB mm MHT HH

Process
connection
request via
supervisory
messages

Process data

Disconnect
terminal

Disconnect
from network

Program
terminates

and

operating
system

prints
dayf ile

IntercontroL
point
interface

to
network
software

1 MM -HMB* BUM»

Validate
application
program access

Validate
user
access

Connect
terminal

to
application
prog ram

Conversion

of upline
input from

ASCII if

desired by
application
programs

Switch

or queue
terminal
for dis-

connection

from host

Acts as input/

output driver
for front-end
(host) NPU

Conversion
of downline
output to

ASCII if

application
programs
send display-
coded data

Conversion to

and from ASCII
in NPU

Log- in

Request
application
program

MM MMi MMI HTMi MMi

Interactive
input

Interactive

output

Disconnect
from

application
program

Switch
application
programs

or log-off

-a*

Switch
terminal
to applica-
tion program

-«< «f(, _

»»
Disconnect
terminal

Disconnect
application

program

»» •*-

^

Disconnect
terminal

from host

Figure 1-6. Typical Application Program Processing Flow

TABLE 1-2. SUPPORTED TERMINAL CLASSES

Line Protocol
Terminal
Class

Device and Archetype Terminal Mnemonict 1

Console Card Reader Line Printer Card Punch Plotter

Asynchronous
or X.25 PADtt

1

2

3

4ttt

5

6

7

8

M33

713

721

2741

M40

H2000

X3.64§

T4014

HASP
Bisynchronoustt

9

14

HASP
(post-print)

HASP
(pre-print)

HASP
(post-print)

HASP
(pre-print)

HASP
(post-print)

HASP
(pre-print)

HASP
(post-print)

HASP
(pre-print)

HASP
(post-print)

HASP
(pre-print)

Mode 4

Synchronous
10

11

12

13

15

200UT

714X

711

714

734

200UT

200UT

200HT

714X

714

200UT

2780/3780
Bisynchronoustt

16

17

2780

3780

2780

3780

2780

3780

2780

3780

3270
Bisynchronous

18 3270 3270

IA blank indicates the device type is not supported for the terminal class.

TTPoint-to-point configurations only. Multidrop configurations are not supported.

1 t IX. 25 PAD does not support terminal class 4.

^Terminal such as VT100 that follows ANSI standard X3.64.

1-14
60499500 S

INFORMATION PROTOCOLS

This section describes the protocols governing
information exchanged for communication between the
Network Access Method (NAM) and each application
program, and between application programs and their
connections. The first portion of this section
defines the terms and concepts needed to understand
the description of information content in the

remainder of this section.

You should remember that parts of the network soft-
ware are written as application programs and also
use these protocols. Some of the features and

options discussed in this and subsequent sections,
therefore, do not necessarily apply to site-written
application programs; such information is indicated
where it is described.

INFORMATION FLOW
Information flow in the network is defined from the

viewpoint of the host computer. Information coming
to the host is said to be traveling upline; infor-
mation moving away from the host is said to be
traveling downline.

Information flow within a host computer is defined
from the viewpoint of a network application program.
Information coming to the application is said to be
traveling upline; information moving away from the
application is said to be traveling downline.

STRUCTURE PROTOCOLS
The network software uses structure protocols of
two types:

A logical protocol based on the concept of a
message

A physical protocol based on various definitions
of a block of data

The conditions that create a logical message and the
conventions governing the subdivision of messages
are influenced by the physical structure protocols
the network uses. The events involved in actually
creating a message are described later in this
section under the headings Interactive Terminal
Input Concepts and Interactive Terminal Output
Concepts

.

PHYSICAL PROTOCOLS AND NETWORK
BLOCKS

Information exchanged with the network is either:

Data of no significance to the network software

Control information of significance only to the
network software

Exchanges of control information and data between

application programs, the network software, and a
terminal user occur in logical messages comprising
one or more physical network blocks. A network
block is a physical subdivision of a logical entity.

A network block is a grouping of information with
known and controllable boundary conditions, such as
length, completeness of the unit of communication,

and so forth. Other network documentation refers

to network blocks as network data blocks; this man-
ual uses the term data block only when referring to

network blocks that do not contain control infor-
mation.

Information exchanges between network processing

units and host computers or between application
programs use this physical structure protocol.

Such exchanges occur in single network blocks.

Information exchanges between network processing

units use a different physical structure protocol.

Such exchanges occur in sets of character and con-

trol bytes called frames. The relationship of a

frame to a network block is not significant to an

application programmer; frames are not discussed in

this section.

Information exchanges between network processing
units and terminal devices use a third physical

structure protocol. Such exchanges occur in sets

of character and control bytes called transmission
blocks

.

Information exchanged between a network processing
unit and a public data network use packets as the
physical structure protocol. When the application
communicates with a terminal or other CDC host
applications, the relationship of a packet to a
network block is not significant to an application
programmer. Therefore, this relationship is not
discussed in this section.

However, the relationship of a packet to a network
block may be significant if the application is com-
municating with a foreign host's application. The

mapping of network blocks into the X.25 protocol is

discussed in the Communications Control Program
Internal Maintenance Specifications.

LOGICAL PROTOCOL AND PHYSICAL
BLOCKS

Upline and downline information within the host and
NPUs is always grouped into physical network blocks.
Network data blocks are grouped into logical mes-
sages. Messages exchanged between an NPU and a
device can also be grouped into physical trans-

mission blocks of one or more logical messages.
Figure 2-1 shows these concepts.

60499500 S 2-1

Physical Network Blocks

Network
Block

Network
Block

Network

Block

—-100 characters—»- — 68 characters-*- -«-100 characters

-

Logical Messages

Message 1 -Message 2-

Network
Block

Network
Block

Network
Block

-*-100 characters - -•-68 characters-*- —-100 characters

-

Terminal Transmission Block (Block Mode Operation Input)

— Transmission Block

Network
Block

—9 characters-*-

-Message 3-

Network
Block

— 9 characters-*-

Message 1 -Message 2-

Network
Block

Network
Block

Network
Block

-•-100 characters-

• Message 3-

Network
Block

— 68 characters-*- -100 characters - —-9 characters—*-

Figure 2-1. Physical and Logical Information Structures

Network blocks are restructured into other types of
blocks at points of entrance and exit from the net-
work processing units. Figure 2-2 shows these
points as circles.

Network Data Blocks

A network data block is a collection of character
bytes, analogous to a clause in English. It is a
partially independent unit of information and might
need to be used with other blocks to form a message.

A network data block can contain all or part of a
message. Whether a message must be divided into
several network data blocks is determined by the
size of a network data block.

Upline and Downline Block Sizes

CDC-defined interactive devices have network data
block sizes that are multiples of 100 character
bytes for upline data and of varying sizes for
downline data. The last block of an upline message
need not contain a multiple of 100 characters.

Applicatlon-to-application connections have upline
and downline blocks of varying sizes. The upline
block size seen by one application is the downline
block size used by the other application.

CDC-defined batch devices have network data block
sizes that are multiples of 64 central memory
words. Each such block is one mass storage physi-
cal record unit (PRU) of a file.

The network administrator establishes the appro-
priate size of upline and downline network data
blocks for each terminal device or application-to-
application connection when the network configura-
tion file is created. Sizes are usually chosen to
fit a single message into a single network data
block, or to optimize use of available network
storage, or to satisfy some other administrative
criterion. The administrator also establishes the
correct size for a terminal transmission block in
the network configuration file.

The initial size of an upline network data block is
established by the site administrator (using the
UBZ parameter of an NDL statement) when he or she
defines the device or application connection that

2-2 60499500 R

HOST

NETWORK BLOCKS

FRONT-END
NPU

NETWORK BLOCKS

0"

TRUNK-

REMOTE
NPU

-e

• FRAMES

NETWORK BLOCKS

COMMUNICATION
LINE !

TERMINAL
DEVICE

J-

TERMINAL
TRANSMISSION

BLOCKS

OR

X.25 PROTOCOL
PACKETS

Figure 2-2. Block Reassembly Points

produces the block. Once a size is established for
a connection, that size determines the maximum num-
ber of characters an application program can receive
as a single network data block. When an upline
message is too long to fit into a single network
data block, the NPU divides it into as many network
data blocks as necessary before delivery to the
application program.

Application-to-application data is not split into
smaller blocks before upline delivery if the data
crosses a trunk line between two host nodes or if
it is passed between two programs in the same host.
Such data does not pass through the NPU software
that prepares all other upline blocks.

The initial size of a downline network data block
is established by the site administrator (using the
DBZ parameter of an NDL statement) when he or she
defines the device or application connection that
receives the block. The established size is a
recommended maximum for the number of characters an

application program should send in a single network
block. The actual maximum size of a downline net-
work block is chosen by the application program
sending the block. NAM imposes an absolute maximum
size, however; this absolute maximum is described
later in this section under the heading Block Buffer
Areas.

The maximum length used for each network data block
to or from a device can be independent of the ter-
minal's transmission block size. For example, a
mode 4 console cannot accept a transmission block
containing more than a specified number of char-
acters. An application program could divide a mul-
tiple line display transmitted to the console of

such a terminal into network blocks smaller than
the buffer space of the specific terminal. However,
the application program does not need to divide its
network blocks. The network software reconstructs
any of the program's network data blocks longer
than the terminal's buffer space into several ter-
minal transmission blocks of the correct size.

An application program is advised of the upline and
downline network data block sizes and terminal
transmission block size defined when logical con-
nection to a device occurs. Your application pro-
gram can change the established upline block size
using control information called a field number/
field value pair; this process is described in sec-
tion 3. Your application program cannot change the
established downline block size but can ignore it.

Ignoring a recommended value can cause resource
problems for the network software, particularly in
the NPUs.

The upline block size is enforced by the network
software, which subdivides terminal transmission
blocks input from a device into network data blocks
of that size or smaller. The upline block size
defines the largest block that NAM will deliver to

the application program from a device.

The downline block sizes defined are advisory
values. That is, an application program can accept
the size specified for a given logical connection
when the connection is made, or ignore that speci-
fication and choose its own value for maximum block
size. If an application program transmits blocks
larger than the downline block size, the network
software does not subdivide them until it creates
transmission blocks for the terminal.

The downline terminal transmission block size is
also enforced by the network software. Your appli-
cation program can change the established trans-
mission block size using a field number/field value
pair, as described in section 3.

Application programs should use the downline block
sizes defined whenever possible. If the size of an
upline or downline network data block is not appro-
priate for the type of data being exchanged with a
connection, device, you should discuss the situation
with the network administrator who configures the
devices being serviced. The Network Definition
Language reference manual listed in the preface
contains guidelines for choosing upline and downline
network data block sizes and for selecting terminal
transmission block sizes.

60499500 R 2-3

Block Limits

Temporary network block storage (queuing) occurs
for upline and downline traffic at several points
in the network. The network admlnstrator controls

the storage space required by controlling the net-
work data block size and the number of blocks queued
in each direction.

The number of blocks queued depends on several
Network Definition Language (NDL) statement param-
eters. One of those parameters, the ABL parameter,
establishes the application block limit. Another
NDL statement parameter, the OBL parameter, estab-
lishes the upline block limit. The upline block
limit determines the number of upline blocks NAM
queues for your program before rejecting further
input.

The upline block limit can be changed by the appli-
cation program, using control information called a
field number/field value pair. This process is
described in section 3.

INTERACTIVE TERMINAL INPUT
CONCEPTS

An interactive device can send or receive data in
two modes:

Normalized mode

Transparent mode

The significance of these data modes is described
later in this section under Interactive Virtual
Terminal Data. The following discussion does not
apply to transparent mode data.

In normalized mode, an interactive device transmits
logical lines of data. Each logical line is analo-
gous to an English sentence. It is a complete unit

of information.

The device can transmit these lines one at a time,

or in sets. It therefore can use one of two pos-
sible transmission modes.

The application block limit is another device or
application connection configuration parameter
received by an application program (as the abl
field value) when logical connection occurs. Your
application program cannot send more than that
number of downline blocks for queuing within the
network. The use of the application block limit is
described in section 3 as part of the data flow
control description.

Transmission Blocks

Terminals send or receive data in physical groupings
of character bytes; these groupings are called
transmission blocks. The size of a downline trans-
mission block for a specific device is also estab-
lished by the network administrator (using the XBZ
parameter of an NDL statement). The value used
might be dictated by hardware requirements.

Transmission blocks exchanged with X.25 devices are
called packets and have different size and protocol
content requirements than transmission blocks
exchanged directly with a terminal. The network
administrator can control some of the character-
istics of packets.

During upline transmissions from a device, the NPU
reassembles the terminal's transmission block into
network blocks. Each transmission block from a

CDC-defined batch device can contain part of a
single message, all of a single message, or several
messages. Each transmission block from a CDC-
defined console device can contain all of a single
message, or several messages.

During downline transmissions, the NPU resassembles
network blocks into terminal transmission blocks.
This conversion is done so that the application
program need not be concerned that output is
delivered in appropriately sized transmission
blocks when the terminal cannot process blocks
larger than a maximum size. Each transmission
block can contain part of a single message or all
of a single message; downline transmission blocks
do not contain more than one message.

If the device can transmit only one character or
one logical line in each transmission block, it is

operating in line mode. If the device can transmit
more than one logical line in a transmission block,
it is operating in block mode.

X.25 devices (terminal classes 1 through 3 and 5
through 8), HASP and 2780/3780 devices (terminal
classes 9, 14, 16, 17, and 18) always operate in
line mode. Mode 4 devices (terminal classes 10
through 13 and 15) always operate in block mode.
Only devices in terminal classes 1 , 2 , and 5

through 8 can operate in both modes.

Line Mode Operation

From a terminal user's viewpoint, transmitting a

single logical line at a time is a buffered line
mode form of input. Buffered line mode allows the

user to select either character-by-character or

line-by-line transmission (some devices have
switches to select either option) without distinc-
tion. Each logical line is terminated by an end-
of-line indicator; this indicator might also trans-
mit the line from the terminal, if the terminal
buffers lines of input. Each logical line becomes
a separate network message when the NPU receives it.

When the NPU is told that an interactive device is

operating in line mode, the NPU performs line turn-
around for it. When a message is sent upline in
this mode, the NPU begins to send any downline data
available for the device. That is, output is
allowed after each logical line of input. (Refer
to the KB option for the IN command, described in
section 3.)

Block Mode Operation

Some devices can transmit many logical lines in a

single transmission block. (The terminal user
sometimes can select or override this condition with
a BLOCK or BATCH mode switch on the device.) Such
devices are called block mode terminals. Mode 4
devices, for example, are always treated as block
mode devices.

2-4 60499500 S

Block mode terminals group logical lines in the
terminal until the transmission key is pressed;
these groups reach the network software as a single

transmission block. The network software forwards
each message to the application program as a sepa-

rate transmission; the effect resembles typeahead
entries from line mode terminals.

Each logical line within the input transmission
block ends with an end-of-line indicator. Each
transmission block is terminated by an end-of-block
indicator.

If the transmission key is pressed without
pressing an end-of-line key or end-of-block key

as the last prior activity, an incomplete mes-
sage exists. The Terminal Interface Program
(TIP) generates an upline network data block if

enough information was received. If a downline

block is available for the device, the data
remains queued while the TIP waits for comple-
tion of the input transmission block. This

situation exists until the terminal user enters
more data, ending with either an end-of-line or

an end-of-block indicator.

Whether each logical line in a transmission block

becomes a separate message or each transmission
block becomes a single message is initially deter-
mined by the network administrator through the

device definition in the network configuration
file. Your application program or the terminal
user can change that mode (refer to the EL and EB

options of the EB command, described in section 3).

When the NPU is told an interactive device is oper-
ating in block mode, the NPU does not perform line
turnaround for it until all of its current trans-
mission block is received. When the terminal is

serviced in this mode, the NPU holds all downline
data available for the device until it detects the
end-of-block indicator. That is, output is allowed
after each logical line of input only if each logi-
cal line of input is transmitted in a separate
block. (Refer to the BK and PT options for the IN

command, described in section 3.)

A terminal might have a block transmission key that
does not generate the end-of-block indicator. When
the block transmission key generates the end-of-line
indicator, the terminal is operating in line mode,
and logical lines are transmitted from the terminal
as separate messages.

When the transmission key does not generate either
the currently defined end-of-line indicator or the
currently defined end-of-block indicator, the ter-
minal user must be aware of the distinction. If

possible, the user should change the end-of-block
indicator to the code actually sent by the key. If

not possible, if the code sent by the key cannot be
determined, or if the key does not generate a code,
then the user must enter an indicator as the last

data character before pressing the transmission
key. These possible conditions exist:

If the transmission key is pressed immediately
after pressing the key that generates an end-

of-line indicator, a message is generated. This
result is the same as if the device was opera-
ting in line mode and the key generating an

end-of-line indicator had been pressed, or as

if the key generating an end-of-block indicator
had been pressed.

If the transmission key is pressed immediately
after pressing the key that generates an end-
of-block indicator, a message is generated.
This result is the same as if the device was
operating in line mode and the key generating
an end-of-line indicator had been pressed, or

as if the transmission key had generated an
end-of-block indicator.

Physical and Logical Lines

A logical line of input can contain one or more
physical lines; a physical line ends when vertical
repositioning of the cursor or carriage occurs. If

the device recognizes a linefeed operation distinct

from a carriage return operation, a physical line
ends when a linefeed is entered. If no distinction

exists between vertical and horizontal reposition-

ing, a physical line is identical to a logical line.

A physical line of input is relevant to the network

software only when a backspace character is proc-
essed. Terminal users cannot backspace across
physical line boundaries to delete characters in

physical lines other than the current one.

A logical line of input always ends when an inter-

active device transmits an end-of-line or end-of-
block indicator. An upline message is normally
transmitted to the host as soon as a logical line

ends.

End-of-Line Indicators

The end-of-line indicator is initially established
by the network administrator when he or she defines
the device in the network configuration file. The
indicator is either a specific code, a code
sequence, or a specific condition associated with
use of a certain key or set of keys by the terminal
operator. The default keys for generating an end-
of-line indicator are shown in table 2-1.

Your application program or the terminal user can
change this indicator (refer to the EL command

options, described in section 3). The NPU normally
discards any end-of-line indicator character code
when it detects the end of a logical line.

Multiple Logical Lines in One Message

For upline data from an interactive device, the
network administrator can configure the device so

that the NPU ignores the character or event that
normally causes it to transmit a message as soon as
a logical line ends. Instead, he or she can make
the NPU use a different character or event to trig-
ger transmission to the host. Your application
program or the terminal user can also make this
change (refer to the EB option of the EL command,
described in section 3).

60499500 R 2-5

TABLE 2-1. DEFAULT MESSAGE DELIMITER AND TRANSMISSION KEYS

Terminal
Class

Archetype
Terminal

End-of-Line Key
Character or
Line Mode

Transmission Key

Block Mode
Transmission Key

1 Teletype Model 30
series

RETURN RETURN CTRL and D

2 CDC 713, 751, 752,
756

RETURN or
CARRIAGE RETURN

RETURN or
CARRIAGE RETURN

SEND or
CONTROL and D

3 CDC 721 NEXT NEXT NEXT

4 IBM 2741 RETURN RETURN None

5 Teletype Model 40-2 RETURN RETURN SEND

6 Hazel tine 2000 CR CR SHIFT and XMIT
or CTRL and D

7 VT 100 CARRIAGE
RETURN

CARRIAGE
RETURN

CTRL and D

8 Tektronix 4014 RETURN RETURN CTRL and D

1 thru 3
5 thru 8

X.25 packet assembly/
disassembly (PAD)
console device

Same as above Packet
transmission
key

Packet
transmission
key

9 HASP (postprint) Variable Variable None

10 CDC 200 User Terminal RETURN None SEND

11 CDC 714-30 NEW LINE None ETX

12 CDC 711 NEW LINE None ETX

13 CDC 714-10/20 NEW LINE None ETX

14 HASP (preprint) Variable Variable None

15 CDC 734 NEW LINE None SEND

16 IBM 2780 End of card End of card None

17 IBM 3780 End of card End of card None

18 IBM 3270 ENTER None None

19 thru
28

Reserved for CDC use

29 thru
31

Site-defined Unknown Unknown Unknown

This option allows the terminal user to pack many
| logical lines into one upline network block. Each

line includes the end-of-line indicator as a data
character that terminates it. This is a form of
line mode, because the host receives only one
message. From the terminal user's viewpoint, one
message is many logical lines.

End-of-Block Indicators

The end-of-block indicator is initially established
for the device by the network administrator when he

or she defines the device in the network configura-
tion file. The indicator is either a specific code,
a code sequence, or a specific condition associated
with use of a certain key or set of keys by the
terminal operator.

The default keys for generating an end-of-block
indicator are shown in table 2-1. In X.25 packet-
switching networks, the packet transmission condi-
tion is always the end-of-block indicator.

When the device is not operating in block mode, the
end-of-block indicator has the same effect as an
end-of-line indicator.

2-6
60499500 S

Your application program or the terminal user can

change the end-of-block indicator (refer to the EB

command, described in section 3). This indicator

normally is discarded when the last message from the

device is sent upline.

INTERACTIVE TERMINAL OUTPUT
CONCEPTS

A downline message can contain no logical lines (an

empty block or a transparent mode block) or many
logical lines of output. Each logical line can

contain many physical lines of output.

A logical line of output ends when the application

program embeds a code or set of bytes for that

purpose in the message, or when the block containing

the line ends. A downline message ends when an

application program indicates that condition.

Because downline messages can always contain more

than one logical line, an interactive device can

always receive the output equivalent of a multiple-
message block mode input transmission. The appli-

cation program can group logical lines as necessary

to achieve that effect.

If a message fits into a downline network data

block, the block becomes a single-block message.
If one downline message cannot be fit into a single

network data block, the application program can

split it into as many blocks as necessary. An
application program generally sends a single

message (consisting of as many logical lines as

necessary) as the response to one input message
from an interactive device.

Application programs in different hosts exchange

data by transferring the contents of 8-bit bytes

through the network, as if the data were sent to or

received from an interactive virtual terminal.

Application programs can exchange data only in

transparent mode. Upline and downline messages are

not subdivided into logical lines. Embedded codes

are not used to terminate lines or network data

blocks within the messages.

INFORMATION IDENTIFICATION
PROTOCOLS
CDC network host software uses four general con-

ventions for identifying network blocks. These

conventions indicate the following things to the

application program sending or receiving the block:

The kind of message of which the block is a

part; this is called the message type.

The kind of information within the block; this

is called the application block type.

The areas of host central memory containing the

block and containing information describing the

block; these are called the block buffer areas.

The source or destination of the block; these

connection identifiers are called the applica-

tion connection number and the application list

number

.

The following subsections describe these conven-

tions.

BATCH DEVICE DATA

Batch devices can be serviced as site-defined device

types through the interactive virtual terminal

interface described later in this section. A sep-

arate set of interface protocols also exists for

batch devices serviced by CDC-written Terminal

Interface Programs and application programs.

These programs require large amounts of data to be

exchanged between a host computer's mass storage

devices and CDC-defined batch devices. Such batch

data is therefore assembled into messages of one or

more network data blocks. Each network data block

contains one or more mass storage physical record

units (PRUs). Because only the CDC-written Remote

Batch Facility can use the special interface for

CDC-defined batch devices, the remainder of this

manual does not discuss the requirements this

interface imposes on batch data or batch device

support.

APPLICATION PROGRAM MESSAGE TYPES

An application program message is a complete logical

unit of information, comprising one or more physical

network blocks. A message can be a line of data to

or from a teletypewriter, a mass storage file, a

service request to NAM, or a screen of information

for a cathode ray tube.

There are two kinds of application messages, data

and supervisory. Data messages convey information

of significance only to a device user or to another

application program. Data messages can consist of

more than one network data block.

Supervisory messages convey information of signifi-

cance only to the network software. Supervisory

messages consist of only one network block.

Supervisory messages are used by an application

program to control data messages between itself and

logical connections.

APPLICATION-TO-APPLICATION INPUT
AND OUTPUT CONCEPTS

Application programs within the same host exchange

data by transferring the contents of 60-bit central

memory words between control points. A program can

create a connection to itself and exchange data on

that connection.

APPLICATION BLOCK TYPES

The network block is the basic unit of information

exchange for the application program. There are

several types of network blocks that an application

program can exchange. Each type has an identifying
application block type number assigned to it. The

following types exist:

60499500 R 2-7

Null blocks, which are dummy input blocks indi-
cating the absence of any data or supervisory
information. These blocks have an application
block type number of 0.

Blocks containing portions of data messages, but
not terminating those messages. These blocks
have an application block type number of 1; such
blocks are called BLK blocks in other network
documentation.

Blocks that terminate data messages. These
blocks can include physically empty blocks when
such blocks convey logical information. Blocks
that terminate data messages have an application
block type number of 2; such blocks are called
MSG blocks in other network documentation.

Blocks constituting supervisory messages. These
blocks have an application block type number of
3; such blocks include the information in blocks
called CMD, BACK, BRK, ICMD, ICMDR, and other
acronyms in some network documentation.

Blocks containing portions of qualified data
messages, but not terminating those messages.
These blocks have an application block type
number of 6; such blocks are called QBLK blocks
in other network documentation.

Blocks that terminate qualified data messages.
These blocks can include physically empty
blocks when such blocks convey logical
information. Blocks that terminate qualified
data messages have an application block type
number of 7; such blocks are called QMSG blocks
in other network documentation.

Qualified data can be used only on application-to-
application connections. Such data has no special
significance to the CYBER 170 network software.
Qualified data is intended for application programs
in order for such programs to communicate control
information among themselves that is outside the
data stream but synchronous with it. For example,
user identification information (qualified data)
placed before data in transferring files.

Blocks with an application block type of 6 or 7

cannot be sent or received on the logical
connection between blocks with an application block
type of 1 or 2. Qualified data can only be sent or
received after an unqualified message ends or
before an unqualified message begins.

BLOCK BUFFER AREAS

All network blocks are exchanged between the appli-
cation program and the network software using two
kinds of buffers:

The block header area

The block text area

Block Header Area

Block header areas each contain a 60-bit word
describing the contents of a corresponding text
area. This block header word accompanies the block
in the corresponding block text area during the
exchange between the application program and NAM.

For downline blocks, the application program creates
the block header and NAM interprets it. For upline
blocks, NAM creates the block header and the appli-
cation program interprets it.

Because the contents of the header word depend on
the contents of the text area, the header word for-
mats are described in this manual after the text
area content protocols are described. To simplify
the header area descriptions, they are presented in
four separate formats:

For upline network data blocks

For downline network data blocks

For upline supervisory message blocks

For downline supervisory message blocks

Block Text Area

A block text area is separately addressed from its
header area and need not be contiguous to it. The
text area contains the single network block
described by the header word in the header area.

Text areas can be of varying length, as necessary
to accommodate various block lengths. The text area
has a maximum length expressed as a whole number of
central memory words. Text areas can be up to 410
central memory words long.

The length of the text area used by the application
program is described to the network by the applica-
tion program. The text area length must be calcu-
lated from the maximum length of the blocks it will
contain.

Block length is distinct from text area length.
The length of a block depends on the type and use
of the block.

Null blocks have zero length and do not require any
central memory words for their text area. Other
block types have lengths expressed in character byte
units, although the bytes need not actually contain
characters.

Blocks are always a whole number of character units
long but do not have to be a whole number of central
memory words long. Not all words in the text area
used for a given block need to be filled with
meaningful information.

Supervisory message blocks are 1 through 410 words
long. Data blocks have lengths of zero up to the
maximum number of characters that can fit in the
maximum text area of 410 words, or 2043 characters,
whichever occurs first.

2-8
60499500 S

Downline messages containing more characters than

| the text area can hold must be divided into several

network data blocks . Each such block must fit into

the text area. Each of these blocks should also

meet the network block size requirement and must be

transmitted separately.

Upline data blocks can be truncated to fit into the

existing text area. Alternatively, the application

program can use a large text area for large blocks

and a small text area for small blocks.

CONNECTION IDENTIFIERS

Two parameters identify and control the routing of

messages:

The application connection number

The application list number

Both parameters are used in AIP calls that fetch

incoming network data blocks. The application con-
nection number is used in the block header words of

outgoing blocks.

Application Connection Number

The application connection number is a 12-bit inte-
ger used to address a particular logical connection.

The connection number can be used as an index into

a control structure (for example, the number of a
connection could be the ordinal of a corresponding

device table) or used in any other manner the

application chooses.

These connection numbers are assigned serially by

NAM for each application program. Numbers that
become available because of disconnections are

reassigned to subsequent connections.

A connection number of zero indicates the control

connection on which asynchronous supervisory mes-
sages are sent and received. (See Supervisory Mes-
sage Content and Sequence Protocols, later in this

section.)

Application List Number

NAM permits an application program to group connec-

tions with similar processing requirements into

numbered lists. This is an efficiency feature,
relieving the application of the need to specify

individual connections each time upline block proc-
essing is required. Instead, when a request is

made for a block from a connection on a list, any

device or application program connections with empty

input queues are automatically skipped and a block
from the first nonempty queue is returned. A single

null block is returned when none of the connections
on the list have any input queued.

This feature can be used in many kinds of list

structures. For example:

An application program must process input from

devices with large network block sizes (such as

interactive graphics terminals in a specific

terminal class) differently than input from
devices with small block sizes. This processing
occurs in different portions of the program
code; therefore, the application program assigns
the devices using large blocks to list 1 and
the devices using small blocks to list 2.

An application program treats all devices the

same and must process blocks from them on an
equal basis. Accordingly, it assigns them all

to the same list.

An application program services terminals in

four geographical areas; each must be treated

separately because of varying state laws.

Accordingly, they are assigned to lists 1

through 4.

An application program services devices that
should be treated the same, but with the fol-

lowing complication: when the application has

received a block from a particular terminal, it

must perform some time-consuming function that

prevents it from immediately processing another

block from the same terminal. Accordingly, the
application places all connections on list 1 and

issues an input request on list 1. When a block

for connection x is returned, it temporarily
inhibits receipt of data on connection x before

it issues the next input request. When it can

accept another data block from the terminal
using logical connection x, the application
program sends a supervisory message to reverse

the effect of the temporary inhibition.

The parameter used for this kind of processing is

called the application list number. The application

list number is an integer from through 63 speci-

fied by the application program when it accepts a

connection. NAM links message input (upline) queues

of all connections that have been assigned the same

list number. An application program can request
blocks from these linked queues in rotation (with-

out specifying individual connections) by including

the assigned application list number in a NETGETL

or NETGTFL statement (described in section 5).

Each list number identifies one connection list. A
connection list can be viewed as a table of connec-

tion numbers. These connection numbers are entered

in the table in the order in which the application
program assigns the connections to the list. When

the list is scanned for input from a connection,

the connections are examined in the order in which
they are entered in the table.

The application program explicitly assigns the list

number to each logical connection when the connec-

tion is established. The logical connection cor-

responding to application connection number zero

already exists when the application is connected to

the network. For this reason, application connec-

tion number zero is automatically assigned to

application list number zero without program inter-

vention.

The application program does not have to maintain

any tables associating connection numbers and list

numbers. The application program need not use list

processing at all.

60499500 R 2-9

DATA MESSAGE CONTENT
AND SEQUENCE PROTOCOLS

I

Data blocks consist of 1 through 410 60-bit words

or 1 through 2043 8-bit or 12-bit bytes. The

fields within these blocks convey information to or
from the terminal user. Data blocks have
associated block header words. These header words
convey information to the network software
concerning the contents of the corresponding text
area buffer.

Data blocks are sent and received through the
Application Interface Program routines described in
section 5. The application program fetches data
messages one block at a time. When the connection
queue is empty, a null block with an application
block type of zero is returned.

The network software provides a mechanism for the
application program to determine when data blocks
are queued. When a call to an AIP routine is com-
pleted, a supervisory status word at a location
defined by the application program is updated to
indicate whether any data blocks are queued. As
long as the application program continues to make
calls to AIP routines, it can test the supervisory
status word periodically (instead of attempting to
fetch null blocks from all application connection
numbers). The supervisory status word and the use
of NETWAIT are described in section 5.

The protocols for data message text and the use of
the text area buffer depend on whether the logical
connection is with another application program, an
interactive virtual terminal device, or a passive
batch device. Blocks exchanged with other applica-
tion programs in the same host have the fewest
requirements and most flexible structure. Blocks
exchanged with CDC-defined batch devices using the
special batch device protocol have the most
requirements and the least flexible structure.

Requirements for blocks exchanged with other appli-
cation programs in the same host are covered in the
figures later in this section, and in section 3.

Blocks exchanged between application programs are
groups of binary character bytes with no parity,
equivalent to transparent mode data. Such blocks
can use the eighth bit of an 8-bit byte as data and
need not have the transparent mode bit set in their
block header; see the decriptions of transparent
mode and block header word content later in this
section.

The requirements for exchanging blocks with inter-
active virtual terminal devices are described below.
Requirements for blocks exchanged with batch devices
through the special batch device interface are not
described because that interface is available only
to RBF.

INTERACTIVE VIRTUAL TERMINAL DATA

An interactive virtual terminal can be either a
CDC-defined console device or a site-defined device.
An interactive virtual terminal can send and receive
data in two modes: normalized mode and transparent
mode. The format and content of data in these modes
is described later in this subsection. The charac-
teristics of an interactive virtual terminal depend
on which data exchange mode is currently used.

In normalized mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width; logical lines are divided automatically
as needed to fit the physical line restrictions
of the device.

A page of output has infinite (no physical)
length; sets of logical lines are divided auto-
matically as needed to fit the physical
restrictions of the device page.

A logical line of output cannot be longer than
a single network block; a single message can
contain an infinite number of logical lines.

Characters are either 7-bit ASCII codes using
zero parity (bit 7, the eighth bit, is always
zero in upline data and ignored in downline
data), or 6-bit display codes with no parity.

Logical lines of input are terminated by a
changeable character or condition; this ter-
minator is the end-of-line or end-of-block
indicator described earlier in this section.
The input terminator is not part of the data
seen by an application program unless the
full-ASCII feature is used (this is explained
later in this subsection and in section 3 where
the FA command is described).

Logical lines of output are terminated by an
ASCII unit separator character code (US, repre-
sented by the hexadecimal value IF) or the end
of a zero-byte terminated record. The applica-
tion program places this terminator in the data.

No cursor positioning actions are required to

acknowledge receipt of input, and no timing
adjustments need to be made at the end of phys-
ical output lines.

Logical lines can be divided into physical lines
by embedding optional format control characters
in downline blocks.

In transparent mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width.

A page of output has infinite (no physical)
length.

Characters are either 7-bit codes using zero
parity (bit 7, the eighth bit, is always zero
in upline data and ignored in downline data),
or codes of a terminal-dependent code set with
terminal-dependent parity

.

Messages of input are terminated by a change-
able character or condition; this terminator is

one of the message or mode delimiters described
later in this section. The mode delimiter is

not part of the data seen by an application
program.

2-10 60499500 R

Messages of output are terminated by a condition

or event chosen by an application program (each

network block is separately designated as

transparent or normalized when sent).

Cursor positioning actions might be required,

and timing adjustments might need to be made at

the end of physical output lines.

Line Turnaround Convention

The interactive virtual terminal concept imposes

some conventions on the content and sequencing of

blocks exchanged with an interactive device. The

primary convention of block sequencing involves the

direction and time of block transmission.

The application program can service an interactive

device on a connection as if the device always

operates in a full-duplex mode. That is, input and

output can occur independently; the terminal user

can enter several logical lines at once (an opera-

tion called typeahead) , without waiting for a

response to each line.

Application program input and output need not

alternate. However, some devices cannot actually

operate that way. To prevent a loss of synchroni-

zation between input and output at such devices, a

line turnaround convention exists. This convention

consists of the following events.

After a block of type 2 (the end of a message) is

sent to a device, no more blocks should be sent

downline until at least one block is input from the

same device. An application program therefore

should never send the last block of a message down-

line until it is ready to wait for input.

A network data block of type 2 has special signifi-

cance to the network software during output to an

interactive device. When such a block is the last

block of the output stream, the network software:

Unlocks the keyboard of an interactive device

being serviced as terminal class 4 (an IBM

2741).

Sends an X-ON code to start an automatic paper

tape input mechanism, if one has been defined

as the input mechanism for the device. Paper

tape operation is explained in more detail in

section 3 where the IN and OP commands are

described.

Starts polling devices in terminal classes 10

I

through 13 and 15 (mode 4 consoles) , and

terminal class 18 (3270 consoles).

Identifies an automatic input prompt to be

returned, if the application program uses this

feature. When this feature is used, the network

software delivers the block to the device and

retains the first 20 characters in the NPU's

input buffer. Subsequent input from the device

is attached to the end of the retained data.

(If more than one logical line is received from

the device, the first is appended to the

retained data.) All logical lines are

transmitted to the host as received from the

device.

If the terminal is a half-duplex device, such as a

2741 or a paper tape reader/punch, it must enter

input before the network software will deliver

additional output messages. Other devices are not

subject to this restriction.

The requirement for an input block after a block of

type 2 is output can be satisfied in several ways

by terminal operators. An empty input line can be

entered and will reach the application program as a

block of type 2 but containing nothing. A line

containing data can be entered and will reach the

application program as one or more network data

blocks

.

Devices can interrupt output by entering input.

When this occurs, the network software stops the

output until the terminal user completes the input

(using an end-of-line or end-of-block indicator).

Output then resumes at the next character of the

current physical and logical line.

INTERACTIVE VIRTUAL TERMINAL

EXCHANGE MODES

The conventions of block content depend on the mode

in which the block is exchanged. There are two

possible exchange modes, normalized mode and trans-

parent node. The latter is referred to in other

documentation as binary mode. This manual uses

transparent mode to indicate exchange of a block

that is not in normalized mode.

Normalized Mode Operation

The interactive virtual terminal interface assembles

message character streams into upline network data

blocks from terminal transmission blocks. It dis-

assembles character streams from downline network

data blocks, reassembling them into terminal trans-

mission blocks.

The assembly operation is controlled by the termi-

nation of logical lines. The disassembly operation

can be controlled by the termination of messages.

The disassembly operation can also be modified by

format control characters embedded in each block,

and by the page width defined for the device (refer

to the PW command in section 3)

.

End of Logical Lines in Input

Logical lines reach an application program as one

or more network data blocks. Logical lines usually

end when a message ends and do not contain the

character or code sequence defined as the end-of-

line or end-of-block key.

However, two special cases exist. Logical lines do

contain the end-of-line or end-of-block codes when

the device is operating in full-ASCII editing mode

(described later in this section). Logical lines

also contain the end-of-line code when the end-of-

line key is changed to be the default end-of-block

key for the device (see the EB option of the EL

command described in section 3). In the latter

case, the transmission block becomes a message, and

the logical lines within it have no effect on con-

struction or type of network data blocks.

60499500 S
2-11

Logical and Physical Lines in Output Upline Character Sets and Editing Modes

The application program does not need to equate a
logical line of output to a complete message nor
does it need to create a separate network block for
each physical line of output. A single logical line
can contain many complete physical lines. A single
block can contain many complete logical lines, and
a message can be one or many such blocks. A phys-
ical or logical line cannot, however, be continued
from one block to another.

The network protocol permits entry from a device of

codes less than or equal to 8 bits per character;
however, a normalized mode character always reaches

an application program as one of the 128 ASCII
characters defined in appendix A. Receipt of an
entered character by the application program depends

on the editing functions performed by the TIP.

Three editing modes exist for the TIP when it proc-
esses normalized data:

Logical lines within downline blocks are ended by
an end-of-line indicator. Unlike the end-of-line
indicators used in upline blocks, downline blocks
always contain codes for the end-of-line function;
the codes used downline are always the same and
usually differ from the codes used upline. The
downline end-of-line indicator varies according to
the application character type of the block; appli-
cation character types are described later in this
section. Bytes used to store indicators must be
included when determining the number of characters
comprising a downline block.

The end-of-line indicator in 60-bit character bytes
(application character type 1) is determined by the
programs exchanging the block. No predefined end-
of-line indicator exists for that application char-
acter type.

The end-of-line indicator in blocks using 8-bit
characters in 8-bit or 12-bit bytes (application
character types 2 or 3) is determined by whether the
block is sent in normalized mode or transparent
mode (described later in this section). In trans-
parent mode, no end-of-line indicator exists. In
normalized mode, the end-of-line indicator is the
ASCII unit separator character US.

The end-of-line indicator in blocks using 6-bit
character bytes (application character type 4) is
12 to 66 bits of zero; these bits are right-
justified to fill the last central memory word
involved. This convention makes each logical line
the equivalent of a zero-byte terminated logical
record.

The 6-bit option requires a right-justified 12-bit
byte in at least one central memory word. On com-
puters using the 64-character set, the colon is
represented in 6-bit display code by six zero bits.
On such systems, if the application needs to send
colons to the terminal console in 6-bit display
code, care must be taken to make sure that a string
of colons is not interpreted as an end-of-line
indicator. A colon preceding the end-of-line indi-
cator is considered as part of the indicator and not
as a colon when it occupies one of the two right-
most character positions in the next-to-last central
memory word of the block or any of the eight left-
most positions in the last word of the block.

All predefined end-of-line indicators embedded
within a block are discarded by the network soft-
ware and produce no characters on the console output
device. The network software can perform carriage
or cursor repositioning when an end-of-line indica-
tor is encountered; this operation is described
later in this section under Format Effectors.

Complete interactive virtual terminal editing
mode

Special editing mode

Full-ASCII mode

Devices always begin a connection with the network
in normalized mode. The initial upline editing mode
is established for each device when the device is

connected to the host. This mode is complete
editing. The application program or the terminal
user can change that mode using the SE or FA
commands, described in section 3.

Complete Editing

During complete editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)

0A (the ASCII character LF)

7F (the ASCII character DEL)

The backspace character code currently defined
for the device (see the BS command in section 3)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

02 (the ASCII character STX) , if entered as the
first character of a message

11 (the ASCII character DC1) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3).

2-12 60499500 S

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the FT option of the IN command in
section 3)

The user-break-1 and user-break-2 character
codes currently defined for the terminal , if

entered as the only character in a message (see

the Bl and 62 commands in section 3)

The abort-output-block character code currently
defined for the terminal , if entered as the
only character in a message (see the AB command
in section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it is used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

The currently defined cancel input character is
always received at the end of the logical line it
cancels. This character is not data.

Special Editing

Special editing takes precedence over complete
editing. Special editing cannot occur if the ter-
minal operates in block mode.

When special editing occurs , linefeed codes and the
currently defined backspace code are forwarded to
the application program as data. The network soft-
ware sends appropriate responses to the device when
it receives these codes.

During special editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)

7F (the ASCII character DEL)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

11 (the ASCII character DC1) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3).

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

02 (the ASCII character STX), if entered as the

first character of a message

The user-break-1 and user-break-2 character
codes currently defined for the terminal, if

entered as the only character in a message (see

the Bl and B2 commands in section 3)

The abort-output-block character code currently

defined for the terminal, if entered as the only
character in a message (see the AB command in

section 3)

The network control character currently defined
for the terminal when it follows an end-of-line

or end-of-block character or when it is used
for such purposes as page turning (see the CT

command and the Y option of the PG command in

section 3)

The currently defined cancel input character is

always received at the end of the logical line it
cancels. This character is not data.

Full-ASCII Editing

Full-ASCII editing takes precedence over special

editing or complete editing. When full-ASCII edit-

ing occurs, almost all codes are forwarded to the
application program as data. The network software
does not perform actions at the terminal when it

receives the codes for backspace , abort-output-
block, cancel input message, user-break-1, or user-

break-2. These codes and the end-of-line and end-

of-block indicator codes are sent upline as data.

During full-ASCII editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL) if it occurs after
the end-of-line or end-of-block indicator

0A (the ASCII character LF) if it occurs after
the end-of-line or end-of-block indicator

7F (the ASCII character DEL) if it occurs after
the end-of-line or end-of-block indicator

The network control character currently defined
for the terminal if it occurs after the end-of-
line or end-of-block indicator or when it is
used for such purposes as page turning (see the
CT command and the Y option of the PG command
in section 3)

The following hexadecimal character codes cannot be
received if entered at certain points in a message:

11 (the ASCII character DC1) if it follows an
end-of-line or end-of-block indicator and the
TIP is supporting output control for the device
(see the Y option of the 0C command in section
3)

13 (the ASCII character DC3) if it follows an |
end-of-line or end-of-block indicator and the
TIP is supporting output control for the device
(see the Y option of the OC command in section I

3) I

60499500 S 2-13

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block indicator and is
explicitly supporting paper tape input from the
device (see the PT option of the IN command in
section 3)

.

The currently defined cancel input character is
always received as the last character of the logical
line it ended. This character is data.

Downline Character Sets

The network protocol permits transmission from a

network application program of any character code
less than or equal to 8 bits. If the application
program uses one of the application character types
that permits transmitting an 8-bit code (application
character types 2 and 3), it cannot use the upper
(eighth) bit for data unless it is transmitting in
transparent mode.

In normalized mode, the application program can only
use the 128 ASCII characters defined in appendix
A. If the application program transmits a 7-bit
ASCII code, it cannot use the upper (eighth) bit
for parity; the network ignores the eighth bit in
downline normalized mode data.

Receipt of a transmitted character by the device
depends on the editing functions and character
transformations performed by the TIP. In addition
to character codes altered during the translation
and substitution operations described elsewhere in
this section and in appendix A, the hexadecimal
character code IF (the ASCII character US used as a
downline block end-of-line indicator) cannot be
received by a device when the application program
transmits a block in normalized mode.

Page Width and Page Length

The application program receives an indication of
the page width and page length in effect for a
device when connection with the device first occurs.
The application program or the terminal user can
change the page width and page length in effect for
a device.

The Terminal Interface Program uses the page length
defined for the device to format physical lines
into physical pages or screens of output. The Ter-
minal Interface Program uses the page width value
to transform logical lines of downline data into
physical lines of output.

For console devices defined as having hardcopy out-
put mechanisms (see the PR option of the OP command
in section 3), a logical line of downline data con-
taining more characters than the page width value
permits is divided into singly spaced physical
lines. These physical lines are equal to or shorter
than the page width in effect and are displayed
successively.

For all console devices, the page width is used as
part of the line-counting algorithm to determine
the page length. Each logical line is examined to
determine how many multiples of the page width (how
many physical lines) it contains. Each complete or
partial multiple counts as one line when the TIP
determines the page length.

Line counting begins at the beginning of each down-
line message. The line counter is reset to zero

each time the page length of the terminal is

reached, each time any input occurs, or when page
turning occurs during page waiting operation. Refer

to the PG, PW, and PL commands in section 3.

The physical line width of the device might be
smaller than the page width defined for the device.
When this happens, the effect of sending a logical
line of downline data containing more characters
than the physical line width permits depends on the

terminal hardware.

Format Effectors

An application program can control the presentation

of the characters within a data block by indicating
that the block contains format effectors. If the
application program chooses to do this, the first

character of each logical line within the block
becomes a format effector. Format effector charac-
ters cause predefined formatting operations when
the block is delivered to the device. The network
software discards these characters after interpre-
tation; therefore, these characters do not appear
on the interactive terminal output device.

You must include format effector characters when
determining the number of characters comprising the
block. Format effector characters are excluded from
page width calculations.

Tables 2-2 and 2-3 describe the predefined opera-
tions produced by each format effector character of

each terminal class. The Terminal Interface Program
performs the predefined format effector operation
by inserting the codes for the characters indicated
in the tables in place of the discarded format
effector character code. The inserted terminal
codes are those of characters in the ASCII set
described in appendix A, with the exception that NL
indicates the terminal-defined new-line code
sequence

.

Numbers preceding codes indicate the number of times
the codes are repeated in the inserted sequence.
Each line output to a console in terminal classes 9

through 18 leaves the cursor positioned at the I

beginning of the next physical line. Processing of
the next line takes this into account.

The format effector characters for clear screen and
home cursor operations (* and 1) receive special
treatment by the Terminal Interface Program when it
is performing a page wait function for the terminal

.

(See the PG command in section 3.) If these char-
acters are encountered when the TIP has output only
part of a page, the TIP pauses for terminal operator
acknowledgment of the partial page . When acknowl-
edgment occurs, the format effector functions are
performed and output continues automatically. This
pause occurs without application program action or
knowledge

.

If the application program does not indicate the
existence of format effectors, the first character
of each logical line does not act as a format
effector. These characters are output normally but
are preceded by the character codes necessary to
space one line before output. These default line-
spacing codes are the ones substituted when a blank
is used as a format effector.

2-1A 60A99500 S

TABLE 2-2. FORMAT . EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES

Terminal
Class

Format
Effector

General Physical Operation
Is Infinite Page
Length Declared?

Does Output
Follow Previous

Input

Code Substituted on
Output Mechanismt

Display or
Printer Paper Tape

1 blank Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

Space 2 lines before output. Does not matter Yes
No

CR, LF
CR, 2LF

CR, LF

CR, 2LF

- Space 3 lines before output. Does not matter Yes
No

CR, 2LF
CR, 3LF

CR, 2LF
CR, 3LF

+ Position to start of current
line before output.

Does not matter Yes or No CR CR

* Position to top of form or
home cursor before output.

Yes Yes
No

CR, 5LF
CR, 6LF

CR, 5LF
CR, 6LF

No Yes or No Calculated by TIP

1 Position to top of form or
home cursor and clear screen
before output.

Yes Yes
No

CR, LF
CR, 6LF

CR, 5LF
CR, 6LF

No Yes or No Calculated by TIP

> Do not change position before
output.

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No CR.LF CR,LF,
DC3,
3NUL

/ Position to start of current
line after output.

Does not matter Yes or No CR CR,

DC3,

3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

2 blank Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

Space 2 lines before output. Does not matter Yes
No

CR, LF
CR, 2LF

CR, LF
CR, 2LF

- Space 3 lines before output. Does not matter Yes
No

CR, 2LF
CR, 3LF

CR, 2LF
CR, 3LF

+ Position to start of current
line before output.

Does not matter Yes or No CR CR

* Position to top of form or
home cursor before output.

Does not matter Yes or No EH EH

1 Position to top of form or
home cursor and clear screen
before output; delay 100

milliseconds before further
output.

Does not matter Yes or No EH, CAN EH, CAN

>
Do not change position before
output

.

Does not matter Yes or No None None

60499500 R 2-15

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Terminal
Class

Format
Effector

General Physical Operation
Is Infinite Page
Length Declared?

Does Output
Follow Previous

Code Substituted on
Output Mechanism!

Input Display or
Printer Paper Tape

• Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,

3NUL

/ Position to start of current
line after output.

Does not matter Yes or No CR CR,

DC3,
3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

3 blank Space 1 line before output. Does not matter Yes
Ho

CR
CR, LF

CR
CR, LF

Space 2 lines before output. Does not matter Yes
No

CR, LF
CR, 2LF

CR, LF
CR, 2LF

- Space 3 lines before output. Does not matter Yes
No

CR, 2LF
CR, 3LF

CR, 2LF
CR, 3LF

+ Position to start of current
line before output.

Does not matter Yes or No CR CR

* Position to top of form or
home cursor before output.

Does not matter Yes or No EH EM

1 Position to top of form or
home cursor and clear screen
before output.

Does not matter Yes or No EM, FF EM, FF

> Do not change position before
output

.

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current
line after output.

Does not matter Yes or No CR CR,

DC3,
3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

4tt blank Space 1 line before output. Does not matter Yes
No

None
NL

N/A

Space 2 lines before output. Does not matter Yes
No

NL
2NL

N/A

- Space 3 lines before output. Does not matter Yes
No

2NL
3NL

N/A

+ Position to start of current
line before output.

Does not matter Yes or No nBS
n is calci

TIP from <

position

N/A
ilated by
;urrent

2-16 60499500 R

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Terminal
Class

Format
Effector

General Physical Operation
Is Infinite Page
Length Declared?

Does Output
Follow Previous

Input

Code Substituted on
Output Mechanism!

Display or
Printer

Paper Tape

* Position to top of form or
home cursor before output.

Yes Yes
No

5NL
6NL

N/A

No Yes or No nNL N/A
n is calculated by
TIP from current
position

1 Position to top of form or
home cursor and clear screen
before output.

Yes Yes
No

5NL
6NL

N/A

No Yes or No nNL N/A
n is calculated by
TIP from current
position

• Do not change position before
output

.

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No NL NL

/ Position to start of current
line after output.

Does not matter Yes or No nBS
n is calci

TIP from
position

nBS
ilated by
current

Any other
ASCII

character

Space 1 line before output. Does not matter Yes
No

None
NL

None
NL

5 blank Space 1 line before output. Does not matter Yes
No

None
LF

None
LF

Space 2 lines before output. Does not matter Yes
No

LF
2LF

LF
2LF

- Space 3 lines before output. Does not matter Yes
No

2LF
3LF

2LF
3LF

+ Position to start of current
line before output.

Does not matter Yes or No ESC, G ESC, G

* Position to top of form or
home cursor before output.

Does not matter Yes or No ESC, H ESC, H

1 Position to top of form or
home cursor and clear screen
before output.

Does not matter Yes or No ESC, R ESC, R

> Do not change position before
output.

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No LF LF,

DC3,
3NUL

/ Position to start of current
line after output.

Does not matter Yes or No ESC, G ESC, G,

DC3,
3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

None
LF

None
LF

60499500 R 2-17

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND Z.25 CONSOLES (Contd)

Terminal
Class

Format
Effector

General Physical Operation
Is Infinite Page
Length Declared?

Does Output
Follow Previous

Input

Code Substituted on
Output Mechanismt

Display or
Printer Paper Tape

6 blank Space 1 line before output. Does not matter Yes or No CR CR

Space 2 lines before output. Does not matter Yes
No

CR
2CR

CR
2CR

- Space 3 lines before output. Does not matter Yes
No

2CR
3CR

2CR
3CR

+ Position to start of current
line before output.

Does not matter Yes or No None None

* Position to top of form or
home cursor before output.

Does not matter Yes or No DC2 DC2

1 Position to top of form or
home cursor and clear screen
before output.

Does not matter Yes or No FS FS

» Do not change position before
output.

Does not matter Yes or No None None

* Space 1 line after output. Does not matter Yes or No CR CR,

DC3,

3NUL

/ Position to start of current
line after output.

Does not matter Yes or No None DC3,
3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes or No CR CR

7 blank Space 1 line before output. Does not matter Yes
No

CR
CR.LF

CR
CR, LF

Space 2 lines before output. Does not matter Yes
No

CR, LF
CR, 2LF

CR, LF
CR, 2LF

- Space 3 lines before output. Does not matter Yes
No

CR, 2LF
CR, 3LF

CR, 2LF
CR, 3LF

+ Position to start of current
line before output.

Does not matter Yes or No CR CR

* Position to top of form or
home cursor before output.

Does not matter Yes or No ESC.l.H ESC,[,H

1 Position to top of form or

home cursor and clear screen
before output.

Does not matter Yes or No ESC.l.H,
ESC.l.J

ESC.t.H.
ESC, I,

J

» Do not change position before
output.

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current
line after output.

Does not matter Yes or No CR CR.

DC3,
3NUL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

2-18 60499500 R

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Terminal
Class

Format
Effector

General Physical Operation
Is Infinite Page

Length Declared?

Does Output
Follow Previous

Input

Code Substituted on
Output Mechanism!

Display or
Printer

Paper Tape

8 blank Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

Space 2 lines before output. Does not matter Yes
No

CR, LF
CR, 2LF

CR, LF
CR, 2LF

- Space 3 lines before output. Does not matter Yes
No

CR, 2LF
CR, 3LF

CR, 2LF
CR, 3LF

+ Position to start of current
line before output.

Does not matter Yes or No CR CR

* Position to top of form or
home cursor before output.

Does not matter Yes or No ESC, FF ESC, FF

1 Position to top of form or
home cursor and clear screen
before output; delay 1 second
before further output.

Does not matter Yes or No ESC, FF ESC, FF

» Do not change position before
output.

Does not matter Yes or No None None

• Space 1 line after output. Does not matter Yes or No CR, LF CR, LF,
DC3,
3NUL

/ Position to start of current
line after output.

Does not matter Yes or No CR CR,
DC3,

3NOL

Any other
ASCII
character

Space 1 line before output. Does not matter Yes
No

CR
CR, LF

CR
CR, LF

TPaper tape column does not apply to X.25 devices .

ttx.25 devlces cannat belong to terminal class 4.

The application program sets a field in the downline

block's header word to indicate whether the block
contains format effectors. This indication, how-
ever, has no effect on the use of format control

characters within logical lines of the block. Table
2-4 lists the code substitutions performed for
embedded control characters during output to a

device in each terminal class. This table uses the

same character representation convention as tables
2-2 and 2-3, with the following exceptions: the

hexadecimal terminal codes are shown for multiple
ASCII character sequences or for non-ASCII character
sequences

.

Transparent Mode Operation

Blocks exchanged between an application program and
a console device in transparent mode do not use most
of the features of the interactive virtual terminal
interface

:

No input editing occurs.

No code conversion occurs.

No format effector transformations are performed

for downline blocks.

No page width operations are performed to pre-
serve physical line boundaries.

Page waiting occurs only at the end of a down-

line message.

Transparent mode operation is separately selected
for input and output. Either the terminal operator
or the application program can start transparent

mode input, using the IN command described in sec-
tion 3. Only the application program can start

transparent mode output.

60499500 R 2-19

TABLE 2-3. FORMAT EFFECTOR OPERATIONS FOR SYNCHRONOUS CONSOLES

Terminal Class

9 and 14

Format Effector

10 thru 13, 15,
and 18

Any other ASCII character

blank

16 and 17

Any other ASCII character

Any ASCII character

General Physical Operationt

Before Output

Space 1 line.

Space 2 lines.

None.

After Output

Space 1 line.

Space 1 line.

Space 1 line.

None.

Space 1 line.

Space 2 lines.

Position to top of form
or home cursor.

Position to top of form
or home cursor and clear
screen.

None.

Before the first line of
the message, generate
the prefix text

***C0NS0LE MESSAGE

Before the subsequent
lines of the message,
do nothing.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

Space 1 line.

INo direct correspondence to code substituted on output device can be made. Code used for
implementation depends on placement of message blocks within a transmission.

Data blocks input in transparent mode have a field
set in their associated header word to indicate this
condition. Output blocks require the same field to
be set.

I Transparent mode data can occupy up to 8 bits of an
8-bit byte, representing up to 256 distinct char-
acter codes of device instructions. Codes longer
than 8 bits cannot be exchanged; data packed in
12-bit bytes by an application program or a termi-
nal device is truncated to 8 bits by the network
software

.

HASP terminals (terminal classes 9 and 14) and
bisynchronous terminals (terminal classes 16 and 17)
cannot transmit or receive such blocks. All other
terminals can, although mode 4 terminals and 3270
terminals (terminal classes 10 through 13 and 15)
require the special treatment described below.

Mode 4

During transparent mode operation, the application
program is responsible for all data formatting and
terminal control. For mode 4 terminals, this means
that the Terminal Interface Program does not blank-
fill the current line and unlock the keyboard before
input can be performed but does add or remove the
line transmission portion of the protocol envelope
to or from all message text exchanged with the ter-
minal .

Two mutually exclusive forms of transparent mode
input can be selected. The network administrator
can make this selection when the device is defined
in the network configuration file, or the applica-
tion program or the terminal operator can make it
while the device is active. The two forms are:

Single message

Multiple message
operation)

(analogous to block mode

2-20
60499500 S

TABLE 2-4. EMBEDDED FORMAT CONTROL OPERATIONS FOR CONSOLES

Terminal Class
Format Control

Character
General Physical Operation Code Substituted on Output Mechanism

1 thru 3

7 and 8

LF

CR

Space 1 line before next char-

acter output.

Position to start of current

line before next character
output

.

LF

CR

4 LF

CR

Space 1 line before next char-
acter output.

Position to start of next line
before next character output.

LF

NL

5 LF

CR

Space 1 line before next char-

acter output.

Position to start of current
line before next character
output.

ESC, B

ESC, 6

6 LF

CR

Space 1 line before next char-
acter output.

Position to start of current
line before next character
output

.

None

CR

9, 14,

and 18

LF

CR

Space 1 line before next char-
acter output.

Position to start of next line
before next character output.

None

None

10 thru
13 and
15

LF

CR

Space 1 line before next char-
acter output.

Position to start of next line
line before next character
output

.

None

IB, 41 (ASCII); 31, 41 <External BCD)

16 LF

CR

Space 1 line before next char-
acter output.

Position to start of next line
before next character output.

None

10, IF

17 LF

CR

Space 1 line before next char-
acter output.

Position to start of next line
before next character output.

None

10, IE

60499500 S 2-21

Downline

The application constructs a screen-full of
protected/unprotected fields and supplies all the
desired attribute characters and screen-buffer-
addresses for the fields. The TIF is responsible
for preceding the block of output by SYNC-
characters, start-of-text, and escape-char, and
attaches ETX.CRC.PAD at the end. The TIP also
translates all downline data ASCII to EBCDIC and
performs SYNC-fill.

A typical start of a field would be:

all in ASCIISBA set-buffer-address x'll'
BA1 buffer-address-1
BA2 buffer-address-2
ATT attribute-char

where the attribute-character determines the char-
acteristics of the field:

- protected
- unprotected
- intensified
- numeric shift

The application is also expected to insert the
cursor at a desired location.

Once transparent output is delivered to a 3270
terminal, the TIP assumes transparent input until a
non-transparent downline block is delivered to the
terminal

.

To protect the integrity of the protocol, the TIP
replaces certain downline characters by NULLs. The
characters replaced are:

SOH, STX, ETX, EOT, ENQ, ACK.NAK, SYNC

Upline

Once transparent output is delivered, the TIP sends
to the host all modified, unprotected fields
received from the terminal including the SBA and
buffer-address-chars (2) of each field. The
terminal does not send the attribute characters
back to the TIP.

If the incoming text is larger than one trans-
mission block (256 characters), the TIP will send

BLK/BLK/.../MSG

so that the application can reproduce a full screen.

Single-Message Input

For single-message input, one or more transparent
mode input delimiters are specified, using the DL
command options described in section 3. For
single-message input, when a message ends, trans-
parent mode input ends. Transparent mode messages
need not be equivalent to normalized mode logical
lines.

Single-message transparent mode input ends when the
Terminal Interface Program encounters one of the
mode delimiter conditions. The delimiter condi-
tions are:

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

Occurrence of a 200- to 400-millisecond timeout
in the input

Multiple-Message Input

For multiple-message input, the application program
or the terminal user defines one or two input

message-forwarding signals (equivalent to a normal-
ized mode end-of-line indicator) and one or two

transparent mode input delimiters. Each message
ends at a message-forwarding signal; the last mes-
sage ends when transparent input mode ends. The

message-forwarding signal and mode delimiters may
be modified as described under Changing Device
Characteristics in section 3.

The possible message-forwarding signals are:

Occurrence of a specific character code in the

input

Occurrence of a specific number of character

bytes in the input

The transparent mode delimiters are:

Two consecutive occurrences of a specific char-

acter code (the message-forwarding signal)

A sequence of two character codes (a message-
forwarding code followed by a transparent mode
delimiter code)

Occurrence of a 200- to 400-milllsecond timeout
in the input

Upline Message Blocks

A transparent mode Input block is assembled each
time the network block size is reached or the Ter-
minal Interface Program encounters a message-
forwarding signal. The last block in the last
message is assembled when the delimiter condition
is encountered. If the message-forwarding signal
is a specific character code, the TIP removes that
code from the character stream before assembling
the last block.

In transparent mode, the concept of a logical line
is not meaningful to the network software. Both the

end-of-line and end-of-block indicators are data
within a transparent message. These indicators
have no significance to the network software.

Transparent Mode Output

Transparent mode output data can be divided
arbitrarily into blocks and messages, provided the
restrictions on network block size are met. A
transparent mode downline block ends when the last
character it contains is transferred to the network
(defined by the tic field in the block header,
described later in this section)

.

2-22 60499500 S

If the TIP is performing page-wait operations for
the terminal during transparent mode operation,
output stops to wait for terminal operator acknowl-
edgment at the end of each message. The automatic
input feature can be used with the last block of a

transparent mode output message.

Parity Processing

Actual terminal codes are right-justified with zero

fill within the 8-bit character portion of the
input or output byte. The codes contained in the
input or output bytes depend on the parity option
declared for the terminal.

the character data and is not changed during

input or output.

If the terminal uses a 6-bit code, with the

seventh bit as a parity bit, the setting of the

seventh bit is determined by the parity option

selected for the terminal. If zero parity is

declared, the seventh bit is always zero on

input and output. If odd or even parity is

declared, the seventh bit varies on input and

output to satisfy the character parity re-

quirement. If no parity or ignore parity is |
declared, the seventh bit is treated as part of

the character data and is not changed during

input or output

.

The actual terminal code parity bit can be used for

meaningful code only if no parity or ignore parity

is declared. Otherwise, the parity bit is zero in

input blocks and set by the Terminal Interface
Program on output.

For example

:

If the terminal uses a 7-bit code such as ASCII,
with the eighth bit as a parity bit, the set-
ting of the eighth bit is determined by the

parity option selected for the terminal. If

zero parity is declared, the eighth bit is

always zero on input and output. If odd or even
parity is declared, the eighth bit varies on
input and output to satisfy the character parity
requirement. If no parity or ignore parity is

declared, the eighth bit is treated as part of

APPLICATION-TO-APPUCATION
CONNECTION DATA

Because application-to-application connection data
is always exchanged in transparent mode, programs

can exchange character data in bytes of any size

.

The program at both ends of the connection must
interpret the data using the same byte size.

Programs within the same host can exchange 7-bit or

8-bit character data in one of three ways:

Exchange pairs of 60-bit bytes, each containing
fifteen 8-bit data bytes

Exchange 8-bit data bytes packed as 8-bit bytes

60499500 S 2-22.1/2-22.2

Exchange 8-bit data bytes packed within 12-bit
bytes

Each of these options corresponds to an application
character type, as described in the next subsection.

Programs in different hosts need not use the same

application character type.

Programs can exchange 6-bit character data in one

of two ways:

If both programs are in the same host, they can
exchange 60-bit bytes, each containing 6-bit
(or 6/12-bit) data bytes.

They can exchange sets of fifteen 8-bit bytes,

corresponding to two central memory words per
set (twenty 6-bit characters).

Figure 2-3 illustrates these possibilities. The
parity bit (bit 7 of an 8-bit byte) is not altered
during transmission through the network and can
always be used as data.

APPLICATION CHARACTER TYPES

Blocks always contain character bytes. These char-
acter bytes can be of several lengths and can be
packed within bytes of several sizes. Each permit-
ted combination of character byte length and packing
byte size is called an application character type.
There are several application character types sup-
ported by the released version of the software:

One 60-bit character byte per 60-bit word

One 8-bit character byte per 8-bit byte

7-Bit or 8-Bit Data

60-bit bytes

8-bit bytes

12-bit bytes

6-Bit or 6/12-Bit Data

60-bit bytes

8-bit bytes

Word 1 Word 2

Byte 1 Byte 2

Word 1 Word 2

LEGEND: . Character byte boundary Unused space

I Network data byte boundary

Byte 1 Byte 2

Figure 2-3. Applicatiorrto-Application Connection Data Exchanges

60499500 R 2-23'

One 8-bit character byte per 12-blt byte

One 6-bit display code character byte per 6-bit
byte

Blocks transmitted through a network processing
unit always consist of 8-bit characters in 8-bit
bytes. An application program can use blocks of
this application character type, or have NAM convert
blocks to or from it so that the application pro-

| gram can use one of the remaining valid application
character types. Block conversion consists of byte
mapping and character code conversion.

For a downline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character code conversion
on 8-bit characters in 8-bit bytes; the parity
setting of the receiving device might cause the
upper or eighth bit (bit 7) of the byte to be
set.

Performs no character code conversion on 12-bit
bytes but maps the 8-bit character to an 8-bit
byte by discarding the leftmost four bits of
the 12; the parity setting of the receiving
device might cause the upper or eighth bit (bit
7) of the byte to be set.

Maps 6-bit characters to 8-bit characters by
translating the former as 6-bit display code
and substituting the corresponding hexadecimal
code from the 128-character ASCII set.

For an upline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character conversion on
8-bit characters in 8-bit bytes; the parity
setting of the sending device might cause the
upper or eighth bit (bit 7) of the byte to be
set if the data is sent in transparent mode.

Performs character mapping but no code conver-
sion by right-justifying 8-bit characters in
12-bit bytes with zero fill; the parity setting
of the sending device might cause the upper or
eighth bit (bit 7) of the byte to be set if the
data is sent in transparent mode.

Maps and converts 8-bit characters to 6-bit
characters by translating all ASCII control
characters to display coded blanks, and trans-
lating all hexadecimal ASCII character codes
between 60 and 7F to the display code equiva-
lents of the hexadecimal ASCII character codes
40 to 5F. All other 7-bit ASCII codes are
translated to the display codes equivalent to
the CDC 63-character or 64-character subset of
the ASCII character set (refer to appendix A).

Because conversion and mapping between 6-bit and 8-
bit characters involves a time-consuming character-
by-character replacement of the block's data, use
of a 6-bit display coded application character type
is not recommended and is restricted to blocks
exchanged with interactive devices. For efficiency,
8-bit byte characters are recommended for blocks
exchanged with devices or other application programs
through the interactive virtual terminal interface.

The application character type of an input block is
determined by the character type associated with
the logical connection. This association first
occurs when the connection is established. You can
change the association as necessary while the con-
nection exists. The application character type of
a specific input block is always indicated by a
field in its associated block header word.

The application character type of an output block
is determined solely by a field in its associated
block header area. Input and output blocks trans-
mitted over the same logical connection can there-
fore have different application character types.

CHARACTER BYTE CONTENT

Blocks containing 8-bit characters can be exchanged
with an interactive device in normalized mode or in
transparent mode. Blocks exchanged in normalized
mode always contain 7-bit character codes from the
ASCII character set, with the eighth bit set to
zero. Blocks exchanged in transparent mode can
contain 256 character codes from any character set
used by a terminal, with the setting of the eighth
bit determined by the parity processing selected
for the device. Normalized mode exchanges are the
initial mode. Blocks exchanged in transparent mode I
are identified by a field in their associated block
header word.

Blocks exchanged with another application program
are always exchanged in transparent mode. Trans-
parent mode is the initial and only exchange mode
for such connections. Such blocks need not have
transparent mode use identified by a field in their
associated block header word.

The legal combinations of character types, modes,
and uses are summarized in table 2-5. The mecha-
nisms for declaring character types and exchange
modes are described in the Block Header Content
portion of this section and in section 3.

BLOCK HEADER CONTENT

The content of the block header word associated
with a data block depends on whether the application
program is sending or receiving the block. The
requirements for all header words associated with
upline data blocks are described in figure 2-4.
The requirements for all header words associated
with downline data blocks are described in fig-
ure 2-5. |

2-24 60499500 R

TABLE 2-5. CHARACTER EXCHANGES WITH CONNECTIONS

Application
Character Type

ACT Field
Value

Exchange Mode
Used

Connection
Type

Code Set
(Character Set)

60-bit characters
in 60-bit bytes

1 Transparent Application-to-application
within the same host

Binary (None)

8-bit characters
in 8-bit byte

2 Normalized Application-to-terminal
(consoles)

7-bit ASCII (128 ASCII)

8-bit characters
in 8-bit bytes

2 Transparent Application-to-terminal
(consoles)

Any 6-, 7-, or 8-bit
(Unknown)

8-bit characters
in 8-bit bytes

2 Transparent Application-to-app1ication Binary (None)

8-bit characters
in 12-bit bytes

3 Normalized Application-to-terminal
(consoles)

7-bit ASCII (128 ASCII)

8-bit characters
in 12-bit bytes

3 Transparent Application-to-terminal
(consoles)

Any 6-, 7-, or 8-bit
(Unknown)

8-bit characters
in 12-bit bytes

3 Transparent Application-to-application Binary (None)

6-bit characters
in 6-bit bytes

4 Normalized Application-to-termlnal
(consoles)

6-bit display code to/from
7-bit ASCII (64-character
subset of ASCII)

59 53 41 23 19 16 11

ha abt acn
reserved for
CDC use

act

i

b
u

r

e

t

r

u

r

e

X

P
t

c

a
n

P
e

f

tic

ha

abt

acn

Symbolic header area address, specified as the location to receive the application block

header in a call to NET6ET, NETGETL, NETGETF, or NETGTFL (see section 5).

Application block type of the associated network data block. This field can have the

i/alues:

=0 indicates a null block. (No block is queued or none can be delivered from

the logical connection polled.)

=1 indicates that the associated block is one of several blocks comprising a

single Message, but is not the last such block.

=2 indicates that the associated block is either the last or only one
comprising the message.

=6 indicates that the associated block is one of several blocks comprising a

single qualified data message, but is not the last such block.

=7 indicates that the associated block is either the last or only one

comprising a qualified data message.

Values of 3 through 5 and 8 through 63 are not valid for data blocks on input. You can

access this field with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection from which the associated block
was sent. This field can have the values 1 <^minacn £ acn <^ maxacn _< 4095, where the

i/alues minacn and maxacn are parameters in the NETON statement (see section 5). You can
access this field with the reserved symbol ABHADR (see section 4).

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 1 of 4)

60499500 R 2-25

act Application character type used to encode the accompanying block. This field can contain
the values:

=1 60-bit transparent characters, packed one per central memory word; this
character type can be used only for application-to-application connections
within the same host.

=2 8-bit characters, packed 7.5 per central memory word; this character type
is recommended for transparent mode or normalized mode data on device-to-
application connections and for application-to-application connections
between hosts.

=3 8-bit characters, right-justified in 12-bit bytes with zero fill, packed 5

per central memory word; this character type can be used for transparent
mode or normalized mode data on device-to-application connections and for

application-to-application connections.

=4 6-bit display code characters (see table A-1 in appendix A), packed 10 per
central memory word. This value can be used only for device-to-application
connections in normalized mode when the block is exchanged with a site-
defined device or a CDC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.
11

=12 Reserved for installation use; usage and content are unrestricted and
thru 15 undefined (the released version of the software does not recognize these

values)

.

The value contained in the act field is the value assigned to the connection by the
application program for input, either in the connection-accepted supervisory message (ict
field) or in the most recent change-input-character-type supervisory message (see section
3). You can access this field with the reserved symbol ABHACT (see section 4).

ibu Input-block-undeliverable bit. When ibu has a value of 1, the block associated with
this block header has not been delivered to the application program; ibu is 1 when the
block:

• Is larger than the maximum text length (tlmax parameter) declared by the application
program in its NETGET, NETGETL, NETGETF, or NETGTFL call and the program has not
requested that input data be truncated (see the truncate-input asynchronous
supervisory message described in section 3). The block header contains the actual
length of the queued block in its tic field, given in character units specified by
the act field. The block remains queued until the application program takes one

of the following actions:

Uses the change-input-character-type asynchronous supervisory message
described in section 3 to compress the characters into fewer central memory
words by using a different application character type to pack them more
densely.

Uses the input-truncation asynchronous supervisory message described in

section 3 to delete enough characters so that the remainder fit into the
existing text area.

Uses a longer text area.

The application program then must use another NET6ET, NETGETL, NETGETF, or NETGTFL
call to obtain the block.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 2 of 4)

2-26 60499500 R

• Contains transparent mode data from a connection using an act value of 4. The

block header contains the actual length of the queued block in its tic field

(given in 8-bit bytes) and has an xpt value of 1 (see xpt field description).
The application program can:

Change the input character type for the connection to a value of 2 or 3,
using the change-input-character-type asynchronous supervisory message
described in section 3, then use a NETGET, NETGETL, NETGETF, or NETGTFL

call to obtain the block.

Use the change-input-character-type asynchronous supervisory message with a

set nxp bit as described in section 3; this discards the queued block and
all subsequent blocks of transparent data from the connection.

• Is queued on a connection between application programs within the same host and the
act value specified by your application does not match the act value specified by

the other application in its NETPUT call for the block. The application program can:

Change the input character type for the connection using the change-input-
character-type asynchronous supervisory message described in section 3,
then use a NETGET, NETGETL, NETGETF, or NETGTFL call to obtain the block.

You can access this field with the reserved symboL ABHIBU (see section 4).

tru Truncated data bit. When tru is 1, the block associated with this block header has been
truncated to fit into the text area used. When tru is 0, the block has not been
truncated. The tru bit cannot be 1 unless the application program has issued the data
truncation control asynchronous supervisory message described in section 3 and that

message affects transmissions on this connection. When truncation occurs, the tic field
contains the maximum number of complete transferred character bytes of the block. You can
access the tru field with the reserved symbol ABHTRU (see section 4).

re Reserved for CDC use.

xpt Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. If your program chooses not to receive transparent mode input when it accepts a
connection or changes the input character type of the connection (nxp field, described in

section 3), an xpt value of 1 is received in a block with an abt of (an empty block)
and indicates that one or more transparent mode blocks were discarded by the network
software.

If your program can receive transparent mode input, the interpretation of the value this
field contains depends on the act value used, as follows:

act=1, xpt should be ignored.

act=2, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions might be used to form 256
characters, but the application program must correctly interpret the
format of such data.

act=2, if the data is from an application program:

xpt=0 indicates that the sending application programt did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application programt used an xpt value of
1 in its block header for the accompanying block.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 3 of 4)

60499500 S 2-27

act=3, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized node data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the

128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions in the character portion of the
character byte might be used to form 256 characters, but the
application program, must correctly interpret the format of such data.

act=3, if the data is from an application program:

xpt=0 indicates that the sending application programt did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application programt used an xpt value of
1 in its block header for the accompanying block.

act=4, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 6-bit characters are from the 6-bit
display code set (see table A-1 in appendix A).

xpt=1 indicates that the ibu bit is also set; the tic field contains the
actual block length in 8-bit characters (not in 6-bit characters).
Transparent mode is not supported for act=4; a change-input-
character-type supervisory message must be issued before the block
can be received (see section 3).

You can access this field with the reserved symbol ABHXPT (see section 4).

can Cancel-input bit. When can is 1, the terminal operator used the cancel-input key
defined for the device or the break condition key (see BR command in section 3) to end the
text in the associated block. The associated block always has an abt of 2, and the data
is always from a console device. The cancel-input request also applies to any blocks with
an abt value of 1 that preceded this block; all blocks in the same message should be
discarded. You can access this field with the reserved symbol ABHCAN (see section 4).

pef Parity error flag bit. When pef is 1, the associated block contains a parity error in
one or more of its characters. You can access this field with the reserved symbol ABHBIT
(see section 4).

tic Text length of the associated block, in character units specified by the act field. The
equivalent length in central memory words can be computed as follows:

act=1, tic is the number of central memory words the block requires.

act=2, the number of central memory words the block requires is tic divided by
7.5, rounded upward to an integer.

act=3, the number of central memory words the block requires is tic divided by
5, rounded upward to an integer.

act=4, the number of central memory words the block requires is tic divided by
10, rounded upward to an integer.

act=5 tic is undefined.
thru
15

You can access this field with the reserved symbol ABHTLC (see section 4).

tThe xpt value will always be set to in the upline network block if the data passes through a
packet switching network. Therefore, to get consistent results, it is strongly suggested that xpt=0
be used on all application-to-application connections.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 4 of 4)

2-28 60499500 S

59 53 41 23 19 15U131211

ha

abt

acn

abn

act

ha

n X a

abt acn abn act f

e
P
t P

i

m
tic

Symbolic header area address, specified as the application block header's location in a

call to NETPUT or NETPUTF (see section 5).

Application block type of the accompanying network data block. This field can contain the

values:

=1, indicates that the accompanying block is one of several blocks comprising a

single message, but is not the last such block.

=2, indicates that the accompanying block is either the last or only one
comprising a message.

=6 indicates that the associated block is one of several blocks comprising a

single qualified data message, but is not the last such block.

=7 indicates that the associated block is either the last or only one
comprising a qualified data message.

Values of 0, 3 through 5, and 8 through 63 are not valid for data blocks on output. You
can access this field with the reserved symbol A8HABT (see section 4).

Application connection number of the logical connection to which the accompanying block
should be sent. This field can contain the values 1 <^ minacn _< acn <^ maxacn _< 4095, where

the values minacn and maxacn are parameters in the NETON statement (see section 5.) You
can access this field with the reserved symbol ABHAOR (see section 4)

.

Application block number assigned to the block being sent. This field is an 18-bit
integer that identifies the block when the network software's processing of the block
returns certain supervisory messages (see section 3). You define the block number; it can
be:

A sequencing number

The block's central memory address

The block's mass storage address (physical record unit)

An index value for a block control array or table

An external label

You can access this field with the reserved symbol ABHABN (see section 4).

Application character type used to encode the accompanying block. This field can contain
the values:

=1, 60-bit transparent characters, packed one per central memory word; this
character type can be used only for application-to-application connections
within the same host.

^2, 8-bit characters, packed 7.5 per central memory word; this character type
is recommended for transparent mode data or normalized mode data on
device-to application connections or for application-to application
connections between hosts.

=3, 8-bit characters, right-justified in 12-bit bytes, packed 5 per central
memory word; this character type can be used for transparent mode or
normalized mode data on device-to-application connections, or for
applicatiorrto-application connections.

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 1 of 3)

60499500 R 2-29

=4, 6-bit display code characters (see table A-1 in appendix A), packed 10 per
central memory word. This value can be used only for normalized mode data
on application-to-terminal connections when the block is exchanged with a
site-defined device or a CDC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.
11

=12 Reserved for installation use; usage and content are unrestricted and
thru 15 undefined (the released version of the software does not recognize these

values).

You can access this field with the reserved symbol ABHACT (see section 4).

nfe No-format-effector bit, indicating whether the accompanying block contains format
effectors. If nfe is 1, there are no format effectors in the block; if nfe is 0, the
block contains format effectors requiring removal and interpretation. The nfe field
applies only to normalized mode data exchanged with a site-defined device or a CDC-defined
console device. You can access this field with the reserved symbol ABHNFE (see section 4).

xPt Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. The value used in this field depends on the act value used, as follows:

act=1, xpt value does not determine data translation and can be 1 or 0. A value
of is recommended.

act=2, if the data is for a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations are to
be performed; all eight bit positions can be used to form 256
characters (if parity of none is used), but such data must be
correctly formatted for terminal output.

act=2, if the data is for an application program, xpt does not affect data
translation and can be 1 or 0. For data passing through a public data
network, the receiving application will always see xpt=0. Therefore, it
is strongly recommended that a value of xpt=0 be used by the sender.

act=3, if the data is for a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations are
performed; all eight bit positions in the character portion of the
character byte can be used to form 256 characters (if parity of none
is used), but such data must be correctly formatted for terminal
output.

act=3, if the data is for an application program, xpt does not affect data
translation and can be 1 or 0. For data passing through a public data
network, the receiving application will always see xpt=0. Therefore, it
is strongly recommended that a value of xpt=0 be used by the sender.

act=4, xpt value is does not determine data translation and can be 1 or 0. A
value of is recommended.

act= xpt is not defined,
other

You can access this field with the reserved symbol ABHXPT (see section 4).

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 2 of 3)

2-30 60499500 S

ep

tic

Echoplexing suppression bit, indicating whether the next logical line of nontransparent

input data should not be echoplexed. If ep is 1 and the NPU is echoing characters back to

the terminal (Y value of EP command, described in NAN Version 1/CCP Version 3 Terminal

Interfaces reference manual), the NPU does not echo the next logical line from the

console. If ep is and the NPU is echoing characters <Y value of EP command), the NPU

does echo the next logical line of input. This bit is ignored for blocks sent on

application-to-application connections and for blocks with an abt of 1 on

device-to-application connections.

Automatic-input-mode flag bit. You can use this field when the accompanying block is the

last block (abt of 2) of a message sent to a site-defined device or a CDC-defined console

device and contains only one logical line. If aim is 1, the first text characters

(excluding format effectors) of the block become the first characters of the next data

block input from the device. If the block contains fewer than 20 characters, only the

characters present are used; if the block contains more than 20 characters, only the first

20 are used. When the downline block contains transparent mode data, the next input block

will not be in transparent mode unless transparent mode input operation has been

explicitly selected by the terminal operator or the application program (with one of the

supervisory messages described in section 3). The aim value is ignored for blocks with

an abt of 1. You can access this field with the reserved symbol ABHBIT (see section 4).

We recommend that you do not use this feature. Future versions of the network software
might not support it.

Text length of the associated block, in character units specified by the act value. The

value to use in the tic field can be computed as follows:

act=1, tic is the number of central memory words occupied by the block.

act=2, tic is the number of complete central memory words occupied by the block
times 7.5, plus the number of complete character bytes used in any

remaining central memory word, rounded upward to an integer.

act-3, tic is the number of complete central memory words occupied by the block

times 5, plus the number of 12-bit character bytes used in any remaining

central memory word.

act=4, tic is the number of complete central memory words occupied by the block

times 10.

act=5
thru 15

tic is not defined.

The character count used as the text length must include any format effectors and
end-of-line indicator bytes contained in the block. You can access this field with the
reserved symbol ABHTLC (see section 4).

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 3 of 3)

SUPERVISORY MESSAGE CONTENT
AND SEQUENCE PROTOCOLS

Supervisory message blocks consist of 1 to 410 60-

bit words or 1 to 2043 12-bit bytes. The fields

within these blocks convey information and instruc-
tions to the network software, in a manner similar
to the character bytes of a data message block.
Supervisory messages are sent and received through
the same application program routines as are used
for data blocks. (See sections 4 and 5.) Supervi-
sory messages have associated block header words

,

just as data blocks do. These header words convey
information to the network software concerning the
contents of the corresponding text area buffer.

Supervisory messages have the general formats shown
in figures 2-6 and 2-7. A specific message contains
a fixed combination of four fields and can include

additional parameters. The individual messages
supported by the network software are described in
section 3. The fields are described below in the

order of their use, rather than in the order of

their occurrence within a supervisory message.

The first of the four fields common to all supervi-
sory messages is the primary function code. The
primary function code is used to group supervisory
messages into related functions and determine their
routing within the network software.

60499500 S 2-31

ta word

1

ta word
n

ta

pfc

eb

rb

sfc

59 51 49 43

pfc
e

b

r

b
sfc Parameters

•

Parameters

Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGTFL call as
the location to receive an upline supervisory message or specified in a NETPUT or NETPUTF
call as the location from which to send a downline supervisory message (see section 5).

Primary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the primary function code are
used throughout this manual within mnemonics identifying specific messages. The mnemonics
and their unpacked (right-justified) numerical equivalents are:

Field Mnemonic
Reserved

Symbolic Mnemonic Octal Hexadecimal

bit BI 312 CA
con CON 143 63
ctrlt CTRL 301 C1

dc DC 302 C2
err ERR 204 84
fc FC 203 83
hop HOP 320 DO
intr INTR 200 80
1st LST 300 CO
rot RO 313 CB
shut SHUT 102 42
tch TCH 144 64
tot TO 304 C4

Decimal

202

099
193
194
132
131

208
128
192
203
066
100
196

Primary function codes 00 through E0 hexadecimal are reserved for CDC use. Hexadecimal
codes E1 through EF are for installation use and have no predefined meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).

Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to 0, eb indicates a normal response. The
eb field always contains when a supervisory message is not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).

Response bit. When set to 1, rb indicates a normal response to a previous supervisory
message; rb is always in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol RB (see section 4).

Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
mmemonics and their unpacked (right-justified) numerical equivalents are:

Figure 2-6. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 1 of 2)

2-32 60499500 R

1

Related Reserved
Field Mnemonic Symbolic pfc Symbolic Mnemonic Octal Hexadecimal Decimal

req CON REQ 00 00 00
acrq CON ACRQ 02 02 02
cb CON CB 05 05 05
end

,
CON END 06 06 06

deft CTRL DEF 04 04 04
chart CTRL CHAR 10 08 08
rtct
tcdt

CTRL RTC 11 09 09
CTRL TCD 12 OA 10

cict DC CICT 00 00 00
tru DC TRU 01 01 01
igi ERR LGL 01 01 01

brk FC BRK 00 00 00
rst FC RST 01 01 01

ack FC ACK 02 02 02
nak FC NAK 03 03 03
inact FC INACT 04 04 04
init FC INIT 07 07 07
db HOP DB 16 OE 14
de HOP DE 17 OF 15
du HOP DU 03 03 03

trace HOP TRACE 02 02 02
notr HOP NOTR 07 07 07
rel HOP REL 15 OD 13

rs HOP RS 10 08 08
usr INTR USR 00 00 00
rsp INTR RSP 01 01 01

app INTR APP 02 02 02
off LST OFF 00 00 00
on LST ON 01 01 01

suh LST SWH 02 02 02
fdx LST FDX 03 03 03
hdx LST HDX 04 04 04
insd SHUT INSD 06 06 06
tchar TCH TCHAR 00 00 00
markt TO or

BI or
RO

NARK 00 00 00

You can access the sfc field with the reserved symbol SFC (see section 4).

parameters These parameters can extend into words 2 through n; n < 410. Parameters are defined in
the descriptions of the specific messages in section 3.

tsynchronous supervisory message fields.

Figure 2-6. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 2 of 2)

60499500 R 2-33

ta word
1

ta word
n

ta

pfc

I

I

eb

rb

sfc

59 55 47 43 41 35

pfc
e
b

r

b
sfc Parameters

•

Parameters

Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGTFL call as the
location to receive an upline supervisory message or specified in a NETPUT or NETPUTF call
as the location from which to send a downline supervisory message (see section 5).

Primary function code. Field mnemonics are used throughout this manual in specific message
formats. Reserved symbols corresponding to the field mnemonics can be used to access
message fields (see section 4). Reserved symbols for the primary function code are used
throughout this manual within mnemonics identifying specific messages. The mnemonics and
their unpacked (right-justified) numerical equivalents are:

Reserved
Field Mnemonic Symbolic Mnemonic Octal Hexadecimal Decimal

bi BI 312 CA 202
Ctrl CTRL 301 C1 193
ro RO 313 CB 203
to TO 304 C4 196

Primary function codes 00 through E0 hexadecimal are reserved for CDC use. Hexadecimal
codes E1 through EF are for installation use and have no predefined meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).

Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to 0, eb indicates a normal response. The
eb field always contains when a supervisory message is not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).

Response bit. When set to 1, rb indicates a normal response to a previous supervisory
message; rb is always in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol RB (see section 4).

Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
•Mnemonics and their unpacked (right-justified) numerical equivalents are:

Related Reserved
Field Mnemonic Symbolic pfc Symbolic Mnemonic Octal Hexadecimal Decimal

def CTRL DEF 04 04 04
char CTRL CHAR 10 08 08
rtc CTRL RTC 11 09 09
ted CTRL TCD 12 0A 10
mark TO or

BI or
RO

MARK 00 00 00

You can access the sfc field with the reserved symbol SFC (see section 4).

parameters These parameters can extend into words 2 through n; n _< 410. Parameters are defined in
the descriptions of the specific messages in section 3.

Figure 2-7. Supervisory Message General Content, Synchronous
Messages of Application Character Type 3

2-34 60499500 R

Functions routed between NAM and the application
I program are represented in figures 2-6 and 2-7 by

mnemonics. These mnemonics are defined in paren-

theses after the corresponding function in the

following list:

Connection data flow control (FC)

Error reporting (ERR)

Device control (CTRL)

Connection list management (LST)

Connection characteristic definition (DC)

Interrupt request (INTR)

Connection control (CON)

Terminal characteristic definition (TCH)

Network, shutdown (SHUT)

Host operator commands (HOP)

Terminate output (TO)

I

Break indication (BI)

Resume output (RO)

The precise function of a message within a primary
function grouping is indicated by its secondary
function code, forming the fourth common field. The
mnemonic symbols used to identify these secondary
function codes are related to the use of the mes-
sages. Mnemonics for these codes also appear in

| figures 2-6 and 2-7 and in parentheses after the
secondary functions in the following list:

Request for logical connection (REQ)

End of connection (END)

Connection broken (CB)

Application-to-application connection request
(ACRQ)

Internal shutdown (INSD)

Inactive connection (INACT)

No acknowledgment (NAK)

Acknowledgment (ACK)

Reset (RST)

Break (BRK)

Logical problem (LGL)

Initialization (INIT)

Mark point in data (MARK)

Switch connection between lists (SWH)

Turn connection list processing off (OFF)

Turn connection list processing on (ON)

Turn half-duplex operation on for connection on
a list (HDX)

Turn full-duplex operation on for connection on
a list (FDX)

Begin truncating input on a connection (TRD)

Application interrupt request (APP)

User interrupt request (USR)

Interrupt response (RSP)

Change input character type (CICT)

Report of changed terminal characteristics
(TCHAR)

Request terminal characteristics (RTC)

Define single terminal characteristic (DEF)

Upline terminal multiple characteristics defi-

nition (TCD)

Downline terminal multiple characteristics def-
inition (CHAR)

The second and third common fields are used to

indicate whether the function was performed or not.
By convention, these fields are called the error
and response bits. The error bit is usually set to

indicate the message recipient's refusal to perform
the function; the response bit is set to indicate
the recipient's normal completion of the function.

Together, the four common fields define one super-

visory message. Supervisory messages can be grouped

into two classes of sequencing protocol:

Asynchronous (the largest class)

Synchronous

ASYNCHRONOUS MESSAGES

Asynchronous supervisory messages are sent or

received separately from the stream of data message
blocks between an application program and a logical
connection. Their receipt or the need to send them |
cannot be predicted from the generalized logic

required for data block processing. Such messages

are said to be asynchronous to the data block
stream.

All asynchronous messages are sent or received on a
special logical connection with the preassigned
application connection number of zero. The network
software preassigns this application connection
number to connection list zero.

All asynchronous supervisory messages are actually
sent to or received from software resident in the

host computer, although they may be reformatted by

this software for communication with software out-
side of the host. These messages conform to the

requirements of application-to-application connec-
tions. Asynchronous supervisory messages therefore
use an application character type of one. All
supervisory messages are assigned the nonzero

application block type of three.

60499500 R 2-35

Asynchronous supervisory messages are processed
with the same AIP routines used by an application
program to process data message blocks on logical
connections other than application connection number
zero. Asynchronous supervisory messages are queued
on their special connection until fetched by the
application program.

The application program fetches supervisory messages
one message at a time. When the connection queue
is empty, a null block with an application block
type of zero is returned.

The network software provides a mechanism for the
application program to determine when asynchronous
supervisory messages are queued on application con-
nection number zero. When a call to an AIP routine
is completed, a supervisory status word at a loca-
tion defined by the application program is updated
to indicate whether any asynchronous supervisory
messages are queued. As long as the application
program continues to make calls to AIP routines, it
can test the supervisory status word periodically
(instead of attempting to fetch null blocks from
application connection number zero). The supervi-
sory status word and the use of NETWAIT are
described in section 5.

SYNCHRONOUS MESSAGES

Synchronous supervisory messages are sent or
received embedded in the stream of data message
blocks between an application program and a logical

| connection. Their receipt or the need to send them
is determined by the generalized logic required for
data block processing. Such messages are said to
be synchronous with the data block stream.

All synchronous messages are sent or received on
the logical connection to which they apply. This
logical connection cannot be application connection
number zero.

All synchronous supervisory messages are actually
sent to or received from network software outside
of the host computer. Because the application pro-
gram processes these messages as network blocks
sent to or received from terminals, the messages

conform to the requirements of application-to-
terminal connections. Synchronous supervisory mes-
sages use an application character type of two or
three; your program specifies which is used when it
accepts the connection to the terminal.

Synchronous supervisory messages are processed with
the same AIP routines used by an application pro-
gram to process other blocks on logical connections.
Synchronous supervisory messages are queued on
their connections until fetched by the application
program. Because the application program must dis-
tinguish between data or null blocks and synchronous
supervisory message blocks, supervisory messages
are assigned the application block type of three.

The network software provides a mechanism for the
application program to determine when synchronous
supervisory messages or data blocks are queued on a
logical connection. When a call to the AIP routine
NETWAIT is completed, a supervisory status word at
a location defined by the application program is
updated to indicate whether any synchronous super-
visory message or data blocks are queued. The
application program can test the supervisory status
word periodically, instead of attempting to fetch
null blocks from all application connection num-
bers. The supervisory status word and the use of
NETWAIT are described in section 5.

Synchronous supervisory messages are subject to the
same application block limit as data messages and
are similarly acknowledged. This process is
described in section 3.

BLOCK HEADER CONTENT
The content of the block header word associated
with a supervisory message depends on whether the
message is asynchronous or synchronous, and on
whether it is being sent or received. The require-
ments for asynchronous and synchronous messages are
described in the preceding subsection. The
requirements for all header words associated with
incoming supervisory messages are described in
figure 2-8. The requirements for all header words I

associated with outgoing supervisory messages are
described in figure 2-9.

ha

ha

abt

59 53 41 23 19 16

abt

11

adr
Reserved for

use by CDC act b3 tic

Symbolic header area address, specified as the Location to receive the application block
header in a call to NETGET, NET6ETF, NETGETL, or NETGTFL (see section 5).

Application block type of the associated message block. This field can contain the values:

=0, indicates a null block. (No message is queued or can be delivered from the
logical connection polled.)

=3, indicates that the accompanying block is a supervisory message block.

Values of 1, 2, and 4 through 63 are not valid for supervisory messages on input. You can
access this field with the reserved symbol ABHABT (see section 4).

Figure 2-8. Application Block Header Content for Upline Supervisory Messages (Sheet 1 of 2)

2-36 60499500 R

adr Application connection number of the Logical connection from which the message block

comes. This field can have the values:

=0, for asynchronous supervisory messages from the host portion of the network
software.

=acn, for synchronous supervisory messages from the Terminal Interface Program

servicing the logical connection with the indicated nonzero application

connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

act Application character type used to encode the accompanying message block. The value

appearing in this field depends on the type of supervisory message involved and on the

act value you chose (the set field described in section 3) for synchronous supervisory

messages on this connection; this field can contain the values:

=1, an asynchronous supervisory message packed in 60-bit words. Must be used

for supervisory messages with an adr value of 0.

=2, a synchronous supervisory message packed in 8-bit characters, 7.5

characters per central memory word (the recommended value).

=3, a synchronous supervisory message packed in 8-bit characters, 5 characters

per central memory word.

Because the fields within supervisory messages are groups of bits within central memory

words (rather than characters in a character string), the act field of a supervisory
message does not indicate that character mapping occurred. You can access this field with

the reserved symbol ABHACT (see section 4).

ibu Input-block-undeliverable bit. When ibu is 1, the block associated with this block

header has not been delivered to the application program. The block is larger than the

maximum text length (tlmax parameter) declared by the application program in its NETGET,

NETGETF, NETGETL, or NETGTFL call and remains queued until:

A NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection and specifies

an adequate text length (see section 5).

A truncate- input asynchronous supervisory message (see section 3) is issued for the

connection and a NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection

(see section 5). This action resolves the problem only for synchronous supervisory

messages.

A block header with an ibu value of 1 contains the actual length of the queued block in

its tic field, given in character units specified by the act field. You can access

this field with the reserved symbol ABHIBU (see section 4).

tru Truncated data bit. When tru is 1, the synchronous supervisory message block associated

with this block header has been truncated to fit into the text area used. Asynchronous

supervisory messages are never truncated. This bit contains a meaningful value only after

the application program has issued the data truncation control asynchronous supervisory

message described in section 3 and only if that message affects transmissions on this

connection. When truncation occurs, the block header for the truncated block contains the

maximum number of complete transferred character bytes in its tic field. You can access

this field with the reserved symbol ABHTRU (see section 4).

re Reserved for CDC use.

tic Text length of the associated block, in character units specified by the act field, as

follows:

act=1, tic is the number of central memory words occupied by the block.

act=2, tic is the number of 8-bit bytes containing meaningful message fields.

act=3, tic is the number of 12-bit bytes containing meaningful message fields.

You can access this field with the reserved symbol ABHTLC (see section 4).

Figure 2-8. Application Block Header Content for Upline Supervisory Messages (Sheet 2 of 2)

60499500 R 2_37

ha

ha

abt

adr

abn

act

tic

58 53 41 23 19 11

abt adr abn act tic

Symbolic header area address, specified as the application block header's location in a

call to NETPUT or NETPOTF (see section 5).

Application block type; abt is 3 for all supervisory messages. You can access this field

with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection to which the message block should

be sent. This field can contain the values:

=0, for asynchronous supervisory messages addressed to the host portion of the

network software.

=acn, for synchronous supervisory messages addressed to the Terminal Interface

Program servicing the logical connection with the indicated nonzero

application connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

Application block number assigned to the message block being sent. This field is an

18-bit integer that identifies a synchronous supervisory message block when the network

software's processing of the block returns a block-delivered or block-not-delivered
supervisory message. This field is generally ignored for asynchronous supervisory

messages. If the message is a request for connection with another application program,

that application program will receive this integer as part of the request; see the

CON/ACRw/R supervisory message description in section 3. You define the block number; it

can be:

A sequencing number

The block's central memory address

The block's mass storage address (physical record unit)

An index value for a block control array or table

An external label

You can access this field with the reserved symbol ABHABN (see section 4).

Application character type used to encode the accompanying message block. The value

declared for this field depends on the type of supervisory message involved; this field

can have the values:

=1, an asynchronous supervisory message packed in 60-bit transparent character

bytes, one character per central memory word.

=2, a synchronous supervisory message packed in 8-bit character bytes, 7.5

bytes per central memory word; the recommended value.

=3, a synchronous supervisory message packed in 8-bit characters within 12-bit

bytes, 5 bytes per central memory word.

You can access this field with the reserved symbol ABHACT (see section 4).

Text length of the accompanying block, in character units specified by the act field, as

follows:

act=1, tic is the number of central memory words occupied by the block.

act=2, tic is the number of 8-bit bytes containing meaningful message fields.

act=3, tic is the number of 12-bit bytes containing meaningful message fields.

You can access this field with the reserved symbol ABHTLC (see section 4).

Figure 2-9. Application Block Header Content for Downline Supervisory Messages

2-38 60499500 R

SUPERVISORY MESSAGES 31

This section describes all synchronous and asyn-
chronous supervisory messages that are legal for
application program communication with network
software. These messages are described in the con-

text of their use.

MESSAGE MNEMONICS
Figure 2-6 in section 2 shows the general format of

a supervisory message. Note that this information
is in the text area of the message and must be
accompanied by an application block header as

described in section 2. A supervisory message is
identified by the contents of its primary function
code field, error bit, response bit, and secondary
function code field. This allows a supervisory
message to be described by a mnemonic of the form
shown In figure 3-1. Although many combinations of

valid field values are possible, only certain com-
binations are permitted. Table 3-1 lists these

legal messages alphabetically by mnemonic.

pf c/sfc/sm

pfc The reserved symbolic mnemonic for the
contents of the primary function code
field; this mnemonic can be any of those
listed in figure 2-6 in section 2.

sfc The reserved symbolic mnemonic of the
contents of the secondary function code
field; this mnemonic can be any of those
listed in figure 2-6 in section 2,
provided the secondary function code is

legal for the primary function code used.

sm A letter indicating the combined settings
of the error and response bits; this
letter can be:

R Indicating an initial request
supervisory message (bit setting 00)

N Indicating a normal response
supervisory message (bit setting 01)

A Indicating an abnormal response
supervisory message (bit setting 10)

Figure 3-1. Supervisory Message
Mnemonic Structure

MESSAGE SEQUENCES
Supervisory messages are always used in stereotyped
sequences of one or more messages. Belated messages
(messages distinguished by the use of the error or

response bits) are always part of multiple-message

sequences. The messages described in the following

subsections are discussed in the context of their

normal sequences. Each sequence is illustrated with
a figure that shows the sender and tecipient of the

messages in the sequence, and the direction of

transmission of each message (arrows).

Message sequences include the following:

Managing logical connections

Managing connection lists

Controlling data flow

Converting blocks

Truncating blocks

Managing terminal characteristics

Host operator communication

Host shutdown

Error reporting

MANAGING LOGICAL
CONNECTIONS
Five messages are used in connection management.
These are the CON/ACRQ, CON/REQ, CON/CB, CON/END,

and FC/INIT. These messages as well as examples of

how they are used in connecting devices to applica-
tions, applications to applications, and later

terminating these connections are discussed in this

subsection.

CONNECTING DEVICES TO APPLICATIONS

After an application program has completed a NETON

call, connection-request supervisory messages are

sent to the application on behalf of each device

seeking connection. Request by request, the appli-
cation must decide whether to accept or reject the

requested connection. Rejection might be neces-

sary, for example, when the application program
receives a connection request for a card reader and

it does not support batch devices. To respond to a

connection-request-message, the application must
return one of two similar messages, indicating that
the application is either rejecting or accepting the

connection request. Figure 3-2 shows the common
message sequences in the connection establishment
process.

In this figure, arrows indicate the direction of

transmission of each message. The general term
Network Access Method (NAM) indicates the network
host software sending or receiving the message, |
regardless o*f the software module actually involved.

60499500 R 3-1

TABLE 3-1. LEGAL SUPERVISORY MESSAGES

Message
Mnemonic

Message Meaning Type Block Header
Fields

acn t
act 2, 3

tic - 2

acn »

act = 1

tic - 2

acn "

act = 1

tic - 2

acn *

act = 1

tic = 1

acn =

act - 1

tic = 1

acn =

act - 1

tic > 2

acn »

act = 1

tic - 1

acn »

act = 1

tic = 1

acn =

act " 1

tic > 6

acn f
act » 2, 3
tic = 4

acn ^
act = 2, 3

tic = 2

acn f
act = 2, 3

tic >_ 2

acn +
act » 2, 3
tic > 2

acn 3
s

act = 2, 3

tic = 4

acn 9
s

act = 2, 3

tic > 2

acn /
act = 2, 3

tic > 2

Figure Number
Defining
Message

BI/MARK/R

CON/ACRQ/A

CON/ACRQ/R

CON/CB/R

CON/END/N

CON/END/R

CON/REQ/A

CON/REQ/N

CON/REQ/R

CTRL/CHAR/A

CTRL/CHAR/N

CTRL/CHAR/R

CTRL/DEF/R

CTRL/RTC/A

CTRL/RTC/R

CTRL/TCD/R

Break-indication-marker request

Rejection of application-to-
application connection request

Application-to-application
connection request

Connection broken

All connection processing
completed

End all connection processing

Connection rejected

Connection accepted

Connection requested

No terminal characteristics
changed

Multiple terminal characteristics
defined

Define multiple terminal
characteristics

Redefine terminal characteristic

Bad value in request terminal
characteristics supervisory
message

Request current value of terminal
characteristics

Terminal characteristics
definitions

Upline synchronous

Upline asynchronous

Downline asynchronous

Upline asynchronous

Upline asynchronous

Downline asynchronous

Downline asynchronous

Downline asynchronous

Upline asynchronous

Upline synchronous

Upline synchronous

Downline synchronous

Downline synchronous

Upline synchronous

Downline synchronous

Upline synchronous

3-32

3-13

3-12

3-8

3-10

3-9

3-5

3-4

3-3, 3-14

3-49

3-50

3-48

3-47

3-52

3-51

3-53

3-2 60499500 R

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)

Message
Mnemonic

Message Meaning Type
Block Header

Fields

Figure Number
Defining
Message

DC/CICT/R Change application character type
of connection input

Downline asynchronous acn =

act = 1

tic = 1

3-42

DC/TRU/R Truncate upline block Downline asynchronous acn =

act = 1

tic = 1

3-44

ERR/LGL/R Logical error Upline asynchronous acn =

act = 1

tic >^ 3

3-65

FC/ACK/R Output block delivered Upline asynchronous acn =

act = 1

tic - 1

3-25

FC/BRK/R Connection processing interrupted
by break

Upline asynchronous acn ~

act = 1

tic = 1

3-28

FC/INACT/R Connection inactive Upline asynchronous acn =

act = 1

tic = 1

3-16

FC/LNIT/N Application ready for connection
processing (connection initial-
ized)

Downline asynchronous acn »

act = 1

tic - 1

3-7

FC/INIT/R NAM ready for connection process-
ing (connection initialized)

Upline asynchronous acn =
act = 1

tic = 1

3-6

FC/NAK/R Output block not delivered Upline asynchronous acn =

act = 1

tic = 1

3-26

FC/RST/R Reset connection Downline asynchronous acn =

act - 1

tic = 1

3-29

HOP/DB/R Activate debug code Upline asynchronous acn «

act = 1

tic - 1

3-55

HOP/DE/R Turn off debug code Upline asynchronous acn =

act = 1

tic = 1

3-56

HOP/DU/R Dump field length Upline asynchronous acn
act » 1

tic = 1

3-57

HOP/NOTR/R Turn off AIP tracing Upline asynchronous acn =

act = 1

tic - 1

3-59

HOP/REL/R Release debug log file Upline asynchronous acn =

act - 1

tic » 1

3-60

HOP/RS/R Restart statistics gathering Upline asynchronous acn =

act - 1

tic = 1

3-61

60499500 R 3-3

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)

Message
Mnemonic

Message Meaning Type
Block Header

Fields

Figure Number
Defining
Message

HOP/TRACE/R Turn on AIP tracing Upline asynchronous acn =

act - 1

tic - 1

3-58

INTR/APP/R Application interrupt request Downline asynchronous acn =
act = 1

tic = 1

3-35

INTR/RSP/R Interrupt response Downline or upline
asynchronous

acn =

act - 1

tic - 1

3-33, 3-36

INTR/USR/R User interrupt or user interrupt
request

Upline asynchronous acn »

act = 1

tic - 1

3-31, 3-39

LST/FDX/R Turn on full duplex operation for
connections in list

Downline asynchronous acn =

act - 1

tic = 1

3-24

LST/HDX/R Turn on naif duplex operation for
connections in list

Downline asynchronous acn =

act = 1

tic = 1

3-23

LST/OPF/R Turn list processing for
connection off

Downline asynchronous acn
act » 1

tic = 1

3-20

LST/ON/R Turn list processing for
connection on

Downline asynchronous acn
act » 1

tic - 1

3-21

LST/SWH/R Switch application list number of

connection
Downline asynchronous acn =

act = 1

tic = 1

3-22

RO/MARK/R Resume output marker Downline synchronous acn ^ 0,

act - 2,3
tic = 2

3-34

SHHT/INSD/R Network shut-down in progress Upline asynchronous acn »

act - 1

tic « 1

3-63

TCH/TCHAR/R Terminal characteristics rede-
fined

Upline asynchronous acn =

act - 1

tic = 1

3-46

TO/MARK/R Terminate output marker Downline synchronous acn jt o

act = 2, 3
tic = 2

3-37

3-4 60499500 R

Application NAN Message

-< CON/REQ/R

. »- CON/REQ/N

^ FC/INIT/R

»~

The application program can now send and receive

FC/INIT/N

messages over the logical connection.

Application NAM Message

CON/REQ/R

CON/REQ/A

connection.The application program has rejected the log ical

Application NAM

<*

Message

CON/REQ/R

»»-

^
CON/REQ/N

CON/CB/R

>~ CON/END/

R

CON/END/N

Although the application program was willing
could not be completed.

to accept it, the logical connection

Figure 3-2. Device-to-Application Connection Supervisory Message Sequences

An application program cannot initiate a connection
to a terminal. The connection-request supervisory
message shown in figure 3-3 can only be an incoming
asynchronous message. The application program's
first action in processing a device-to-application
connection sequence is to issue the asynchronous
connection-accepted supervisory message shown in
figure 3-4, or the connection-rejected message shown
in figure 3-5.

If the application program accepts the connection
(assuming that no change has occurred in the status
of the requesting terminal), the network software
informs the application program that the connection

is ready for data transmission. This is done by

sending the asynchronous initialized-connection
message shown in figure 3-6 upline to the applica-
tion program. If conditions have not changed and
the application program can still service the con-
nection, it responds by issuing the connection-
initialized message shown in figure 3-7. Data
transmission on the logical connection can then
begin. After the network software receives the
connection-initialized message, the application
program can send output to console devices or wait
for input from them. An application program cannot
send or receive any supervisory messages or data
blocks on a connection until connection initial-
ization processing has been completed.

60499500 R 3-5

ta

ahnt

ahds

aawc

atwd

ta

con

req

res

aen

abl

5958 54 5251 49 47 45 43 M 39 35 31 29 25 23 2120 1716 12 7 5 3

r

con req res aen abl sdt dt tc res
c

ord

tname pw Pi

ownert si dbz
h

w

res ubz xbz res

logfam famord

Logname us rind

a a a

h h h r

res ahpt

t

i

r

P

d

b
e

s

ant I ahsl ahem ahec ahlp ahep

a a a' a

h h h h

d f c i ahsc res ahdt ahdf ahec ahms

s c s s

res See NOS Administration Handbook

a a a a

t t t t

P r P attt t atis res accd acmd
a o X c

r

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 63-| . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reserved by CDC. Reserved fields contain zero.

Application connection number assigned to this logical connection, if the connection is estab-

lished; 1 £ minacn <_ acn < maxacn £ 4095, where minacn and maxacn are minimum and maximum
values established by the application program in its NETON call. (See section 5.) You can

access this field with the reserved symbol CONACN, as described in section 4.

Application block limit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any time. This value is established for the device involved
in the logical connection when the device is described in the network configuration file.

This field has the range 1 < abl < 7. You can access this field with the reserved symbol
CONABL, as described in section 4.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 1 of 6)

3-6 60499500 S

sdt Subdevice type.

If dt=1 or 12 through 15 (card reader or a site-defined device), this field can have the
values:

029 punch patterns are the default for each job deck

1 026 punch patterns are the default for each job deck

2 Reserved for CDC use
thru
11

12 Reserved for installation use
thru
15

If dt=2 or 12 through 15 (line printer or a site-defined device), this field can have the
values:

64-character ASCII print train

1 64-character BCD (CDC scientific) print train

2 95-character ASCII print train

3 Reserved for CDC use
thru
11

12 Reserved for installation use
thru
15

If dt=4 or 12 through 15 (plotter or a site-defined device), this field can have the values:

Instructions Must be packed in 6-bit bytes

1 Instructions must be packed in 8-bit bytes

2 Reserved for CDC use
thru
11

12 Reserved for installation use
thru
15

dt Device type of the terminal device. This field can have the values:

Console (interactive terminal)

1 Card reader; your program should reject connections with this device type

2 Line printer; your program should reject connections with this device type

3 Card punch; your program should reject connections with this device type

4 Plotter; your program should reject connections uith this device type

5 Reserved for CDC use
thru
11

12 Reserved for installation use
thru
15

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Devi ce-to-Appli cation Connections (Sheet 2 of 6)

60499500 S 3-7

Devices with a device type of zero can be serviced as interactive virtual terminals. Devices

with device types of 1 through 4 must be serviced as batch devices. You can access this

fieLd with the reserved symbol CONDT, as described in section 4. Applications other than RBF

are only allowed to do input/output on batch devices if the devices are of types or 12

through 15.

tc Terminal
terminal
nition o H

ciated wi

reference

class assigned to the terminal either in the network configuration file or by the

operator. The terminal class determines the parameters and ranges valid for redefi-

the device. The device is serviced by the TIP according to the attributes asso-

th the terminal class. These attributes are discussed in the Terminal Interfaces

manual. The terminal class field can have the values:

Reserved for CDC use.

1 Archetype terminal for the class is a Teletype Corporation Model 30 Series.

2 Archetype terminal for the class is a CDC 713-10, 751-1, 752, or 756.

3 Archetype terminal for the class is a CDC 721.

4 Archetype terminal for the class is an IBM 2741.

5 Archetype terminal for the class is a Teletype Corporation Model 40-2.

6 Archetype terminal

typewriter.

for the class is a Hazeltine 2000, operating as a tele-

7 Archetype terminal for the class is a VT100 (ANSI X3.64 standard).

8 Archetype terminal
typewriter.

for the class is a Tektronix 4000 Series, operating as a tele-

9 Archetype terminal
workstation.

for the class is a HASP (post-print) protocol multi Leaving

10 Archetype terminal for the class is a CDC 200 User Terminal.

11 Archetype terminal for the class is a CDC 714-30.

12 Archetype terminal for the class is a CDC 711-10.

13 Archetype terminal for the class is a CDC 714-10/20.

14 Archetype terminal
station.

for the class is a HASP (pre-print) protocol multi leaving work-

15 Archetype terminal for the class is a CDC 734.

16 Archetype terminal for the class is an IBM 2780.

17 Archetype terminal for the class is an IBM 3780.

18 Archetype terminal for the class is an IBM 3270.

19
thru
27

Reserved for CDC use.

28
thru
31

Reserved for installation use.

You can access this field with the reserved symbol CONT, as described in section 4.

Figure 3-3. Connection-Request (C0N/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 3 of 6)

3-8 60499500 S

ord

tname

pw

Pi

ownert

si

dbz

hu

Restricted interactive capability (for consoles only). This field can have the values:

Terminal has unrestricted interactive capability.

1 Terminal has restricted interactive capability.

Applications should limit the amount of interactive dialog with a terminal that has
restricted interactive capability. Such terminals (for example a 2780 or 3780) in which the
console is emulated by a card reader and line printer are not truly interactive. You can
access this field with the reserved symbol CONR, as described in section 4.

Device ordinal, indicating a unique device when more than one device with the same device
type is part of the same terminal. This field can have the value:

1

thru
7

All interactive consoles

Batch devices

The device ordinal is assigned to the device when the device is defined in the network con-
figuration file. You can access this field with the reserved symbol COMORO, as described in
section 4.

Terminal device name, assigned to the device in the network configuration file. This name is

one to seven Obit display code letters and digits, left-justified with blank fill; the first
character is always alphabetic. The terminal device name is the element name used by the net-
work operator to identify the device. You can access this field with the reserved symbol
CONTNM, as described in section 4.

If the device is a console, this field specifies the maximum number of characters in a

physical line of input or output, or 20 < pw < 255. If the device is a batch card reader
or card punch, this field specifies the maximum number of characters in an input or output
record. If the device is a batch line printer, this field specifies the maximum number of
characters in a line of output, 50 < pw < 255. If the device is a plotter, this field
specifies the maximum number of character bytes of plotter information in a record of
output. Page width of consoles is discussed in the Terminal Interfaces reference manual.
You can access this field with the reserved symbol CONPU, as described in section 4. The pw
value can be assigned in the network configuration file or the user can set console pw from
the terminal. Default value depends on terminal class.

Page length of a device, specifying the number of physical lines that constitute a page. The
page length is assigned to the terminal either in the network configuration file or by the
terminal operator; page length is one of the attributes associated with the terminal class by
the TIP, and is discussed in the Terminal Interfaces reference manual. This field can have
the values or 8 <_ pi £255 for interactive consoles, but is always 60 for batch devices.
You can access this field with the reserved symbol C0NPL, as described in section 4.

Terminal device name of the owning console (for batch devices only). For batch devices, this
field contains one to seven 6-bit display code characters, left-justified with blank fill;
for console devices, this field is zero. You can access this field with the reserved symbol
C0N0WNR, as described in section 4.

Access level of the communications line in use. Access to information or resources requiring
a security level higher than this value should be prohibited. This value is the AL parameter
from the NDL statement defining the communication line used by the terminal. This field can
have the values < sL < 15. You can access this field with the reserved symbol CONSL, as
described in section 4.

Block size in characters for any downline block from the application to NAM. The downline
block size is assigned to the device in the network configuration file and is a function of
line speed, device type, and terminal class as described in the Network Definition language
reference manual. This field can have the values 1 < dbz < 2043. The values are advisory
only. You can access this field with the reserved symbol C0NDBZ, as described in section 4.

The hardwired line indicator. A (zero) indicates that the device is not hardwired; a 1

indicates that the device is hardwired.

Figure 3-3. Connection-Request (C0N/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 4 of 6)

60499500 S 3-9

ubz Upline block size (in multiples of 100 characters) for a console device. Upline block size
(in PRUs) of a batch device. Console connections with an upline block size of send blocks
of 100 characters or blocks created when a linefeed is entered from the console. You can
access this field with the reserved symbol CONUBZ, as described in section 4.

xbz Transmission block size (in characters) of the device. This is the number of characters in

an output transmission block that CCP sends to the terminal. You can access this field with
the reserved symbol CONXBZ, as described in section 4.

logfam The NOS family name supplied by the terminal operator during login or by the local configu-
ration file as an automatic login parameter. This family name is one to seven 6-bit display
code letters and digits, left-justified with blank fill. You can access this field with the
reserved symbol CONFAM, as described in section 4.

famord The NOS family ordinal corresponding to the logfam field contents. You can access this field
with the reserved symbol C0NF0, as described in section 4.

Logname The NOS user name supplied by the terminal operator during login or by the local configu-
ration file as an automatic login parameter. This user name is one to seven 6-bit display
code letters, digits, or asterisks, left-justified with blank fill. You can access this
field with the reserved symbol CONUSE, as described in section 4.

usrind The NOS user index corresponding to the logname field contents. You can access this field
with the reserved symbol CONUI, as described in section 4.

ahmt User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONAHNT, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in this word.

ahpt Index value of allowed units plotted per file for the connection's user name. See NOS MODVAL
PT parameter.

ahmti Index value of allowed magnetic tapes for the connection's user name. See NOS MODVAL MT
parameter.

ahrp Index value of allowed removable packs for the connection's user name. See NOS MODVAL RP
parameter.

ahdb Index value of allowed deferred batch jobs for the connection's user name. See NOS MODVAL DB
parameter.

ahtl Index value of central processor time limit per job step for the connection's user name. See
NOS MODVAL TL parameter.

ahsl Index value of system resource unit limit for the connection's user name. See NOS MODVAL JL
parameter.

ahem Index value of allowed central memory field length for the connection's user name. See NOS
MODVAL CM parameter.

ahec Index value of allowed extended central storage field length for the connection's user name.
See NOS MODVAL EC parameter.

ahlp Index value of allowed lines printed per file for the connection's user name. See NOS MODVAL
LP parameter.

ahep Index value of allowed cards punched per file for the connection's user name. See NOS MODVAL
CP parameter.

ahds User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONAHDS, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in this word.

ahdsi Index value of allowed direct access file size for the connection's user name. See NOS
MODVAL DS parameter.

ahfc Index value of allowed maximum number of permanent files in catalog for the connection's user
name. See NOS MODVAL FC parameter.

ahes Index value of allowed maximum total indirect access file storage space for the connection's
user name. See NOS MODVAL CS parameter.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 5 of 6)

• 3-10 60499500 S

ahis

ahsc

ahdt

ahdf

ahcc

ahms

aawc

atwd(atpa)

atpar

atro

atpx

attt

attc

at is

accd

acmd

ausi

Index value of allowed indirect access file size for the connection's user name. See NOS

HODVAL IS parameter.

Allowed security count for the connection's user name. See NOS HODVAL SC parameter.

Allowed number of detached jobs for the connection's user name. See NOS HODVAL DT parameter.

Allowed number of calls per job to the COMPASS HSG macro for dayf i le entries under the

connection's user name. See NOS HODVAL DF parameter.

Allowed number of NOS commands per job for the connection's user name. See NOS HODVAL CC

parameter.

Allowed number of mass storage physical record units per job for the connection's user name.

See NOS HODVAL HS parameter.

User validation control word defined in the NOS validation file. You can access this field

with the reserved symbol CONAAWC as described in section 4. The NOS Administration Handbook
section on the HODVAL command (AW parameter) explains the use of the fields in this word.

This word contains permission bits for the connection's user name. A set bit indicates that

the user name is allowed that permission.

User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONATWD, as described in section 4. The NOS Administration Handbook
section on the HODVAL command explains the use of the fields in this word.

Terminal parity associated with the connection's user name (0 means that PA command is

assumed to require value of E; 1 means that PA command is assumed to require value of 0).

See NOS HODVAL PA parameter.

Number of idle characters associated with the connection's user name,

parameter.

See NOS HODVAL RO

Transmission mode (0 means that EP command is assumed to require value of N; 1 means that EP

command is assumed to require value of Y) . See NOS HODVAL PX parameter.

Terminal type associated with the connection's user name. See NOS HODVAL TT parameter. One

of the following:

Bit Izpe.

52 Teletypewriter compatible terminal, using ASCII codes
51 Block mode terminal, using ASCII codes

50 CDC-713-compatible terminal
49 and 48 Reserved for CDC use

Character set associated with the connection's user name (0 means the NOS NORHAL mode 6-bit
display code set is assumed to be used in permanent files accessed through the Interactive
Facility; 1 means the NOS ASCII mode 6/12-bit display code set is assumed to be used in

permanent files accessed through the Interactive Facility). See NOS HODVAL TC parameter.

Initial Interactive Facility subsystem associated with the connection's user name. See NOS
HODVAL IS parameter. One of the following:

Bit Subsystem

46 BASIC
45 BATCH
44 EXECUTE
43 FORTRAN
42 FTNTS

If no bit is set, the NULL subsystem is used; if all bits are set, the ACCESS subsystem is

used.

Date user name was created, in the format yymmdd.

Date user name permissions were last changed, in the format yymmdd.

The user validation control word. It is defined in the NOS validation file.

Figure 3-3. Connection-Request (C0N/REQ/R) Supervisory Nessage Format,
Device-to-Application Connections (Sheet 6 of 6)

60499500 S 3-11 •

ia

req

acn

nxp

set

ta

59 51 49 43 35 23 11 9 5

n s

con 1 req unused acn unused X

P

c

t

act aln

Symbolic address of the application program's text area from which this asynchronous super-
supervisory Message is sent.

Primary function code 6316 . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Application connection number assigned by the network software to this end of the logical con-
nection being established. The value placed in this field must be the value used in the
CON/REQ/R message to which this message is a response. You can access this field with the
reserved symbol CONACN, as described in section 4.

No transparent input allowed flag. This field can have the values:

Deliver network data blocks when the xpt field in the accompanying block header
word is 1

1 Discard network data blocks when the xpt field in the accompanying block header
word is 1

The change-input-character-type supervisory message, described Later in this section, permits
an application to change to or from allowing transparent mode terminal device input. If
transparent input is not allowed any transparent input from a terminal device destined for
the application will be discarded. You can access this field with the reserved symbol DCNXP,
as described in section 4.

Synchronous supervisory message input character type. This field can have the values:

Application character type 2 should be used

1 Application character type 3 should be used

Indicates the input character type required by the application program for synchronous super-
visory messages. The change-input-character-type supervisory message, described later in

this section, allows an application to change the input character type of synchronous super-
visory messages. You can access this field with the reserved symbol DCSCT, as described in
section 4.

Figure 3-4. Connection-Accepted (CON/REQ/N) Supervisory Message Format,
All Connection Types (Sheet 1 of 2)

| 3-12 60499500 S

act

aln

Application input character type, specifying the form of character byte packing that the

application program requires for input data blocks from the logical connection. This field

can have the values:

Reserved for CDC use.

1 60-bit words. Can be used for application-to-application connections within a

host. Cannot be used for terminal-to-application connections.

2 8-bit characters in 8-bit bytes, packed 7.5 bytes per central memory word; if the

input is not transparent mode, the ASCII character set described in table A-2 is

used.

3 8-bit characters in 12-bit bytes, packed 5 bytes per central memory word, right-

justified with zero fill within each byte; if the input is not transparent mode,

the ASCII character set described in table A-2 is used.

4 6-bit display coded characters in 6-bit bytes, packed 10 characters per central

memory word; the characters used are the ASCII set of CDC characters described in

table A-1. Cannot be used for application-to-application connections or connec-

tions with batch devices.

5 Reserved for CDC use.

thru
11

12

thru
255

The act value declared applies only to input on the connection and can be changed by a

DC/CICT/R supervisory message at any time during the existence of this logical connection.

You can access this field with the reserved symbol CONACT, as described in section 4.

Application list number assigned by the application program to this logical connection;

< aln < 63. You can access this field with the reserved symbol CONALN, as described in

section T.

Reserved for site-defined use.

Figure 3-4. Connection-Accepted (CON/REQ/N) Supervisory Message Format,

All Connection Types (Sheet 2 of 2)

ta

ta

req

59 51 49 43 35 23

con 1 req re acn unused

Symbolic address of the application program's text area from which this asynchronous super-

visory message is sent.

Primary function code 63-| . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reason code, specifying the reason the application program is refusing to complete the connec-

tion. This field is ignored. You can access this field with the reserved symbol RC, as

described in section 4.

Application connection number assigned by the network software to this end of the logical con-

nection being rejected. The value placed in this field must be the value used in the

CON/REQ/R message to which this message is a response. Upon receipt of this message, the net-

work software can reuse this application connection number for a different logical connection

with the same program. You can access this field with the reserved symbol CONACN, as

described in section 4.

Figure 3-5. Connection-Rejected (CON/REQ/A) Supervisory Message Format, All Connection Types

60499500 R 3-13 •

ta

ta

fc

init

acn

ta

ta

fc

init

acn

59 51 49 43 35 23

fc mit unused unused

Symbolic address of the application program's text area receiving this asynchronous super-
visory Message.

Primary function code 83^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol INIT.

Application connection number assigned by the network software to the program end of the logi-
cal connection that has been initialized. This value is the same as that used in previous
CON/REQ/R and CON/REQ/N messages. You can access this field with the reserved symbol FCACN,
as described in section 4.

Figure 3-6. Initialized-Connection (FC/INIT/R) Supervisory Message Format

59 51 49 43 35 23

fc 1 init unused acn unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 83-|a. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol INIT.

Application connection number assigned by the network software to the program end of the logi-
cal connection that has been initialized. This value placed in this field must be the value
used in the FC/INIT/R message to which this message is a response. You can access this field
with the reserved symbol FCACN, as described in section 4.

Figure 3-7. Connection-Initialized (FC/INIT/N) Supervisory Message Format

If the application program rejects the connection,
no further action by the program or the network
software occurs. If the application program accepts
the connection but the network software cannot ini-
tialize the connection, the asynchronous connection-
broken supervisory message shown in figure 3-8 is
sent to the application program. This connection-
broken message requires the application program to
respond by issuing an end-connection asynchronous
message, as shown in figure 3-9. The network soft-
ware finishes this sequence by responding with the
connection-ended asynchronous supervisory message
shown in figure 3-10.

If the application program does not follow these
message sequences, a logical-error asynchronous'
supervisory message is issued to the program. This
message is discussed at the end of this section.

CONNECTING APPLICATIONS TO
APPLICATIONS

When one application program needs to be connected
to another, the first application program sends a
supervisory message request to the network software,
asking for establishment of a logical connection.
Unlike device-to-application connections, the net-
work software permits more than one logical connec-
tion to exist between two application programs.
The only requirements for such connections are that
both programs be running, have completed NETON calls
(as described in section 5) , and are not already
connected to the maximum number of application pro-
grams permitted.

3-14 60499500 R

ta

con

cb

ta

59 51 49 43 35 23

con cb re acn unused

Symbolic address of the application program's text area receiving this asynchronous super-

visory message.

Primary function code 63-|^. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 5. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol CB.

Reason code, specifying the cause of the broken connection. This field can have the values:

Reserved for CDC use.

1 Communication has been lost with the element at the other end of the logical

connection. If the element is an application program, it failed, was shutdown, or

ended the connection; if the element is a device, the line has disconnected or the

device failed.

2 The network software broke the connection. This can occur if this message is a

response to a C0N/RE8/N message containing an invalid parameter the connection

cannot be initialized, or if the NOP disabled the communication line used by the

connection.

3 Reserved for CDC use.

thru
255

You can access this field with the reserved symbol RC, as described in section 4.

Application connection number assigned by the network software to the program end of the

logical connection being broken. This number is always one for which the application program

has previously received a C0N/RE8/R message. You can access this field with the reserved

symbol CONACN, as described in section 4.

Figure 3-8. Connection-Broken (CON/CB/R) Supervisory Message Format

60499500 R 3-15

ta

ta

con

end

59 51 49 43 35 23 17

con end acn unused

aname unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 63-| 6 . You can access this fieLd with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ENDD.

Application connection number assigned by the network software to this end of the logical con-
nection being terminated. The value placed in this field must be the value used in the
CON/REQ/R message beginning this message sequence. Upon receipt of this message, the network
software issues a response message and can reuse this application connection number for a

different logical connection with the same program. You can access this field with the
reserved symbol CONACN, as described in section 4.

Name of next application, one to seven 6-bit display coded characters consisting of letters
or digits only with a leading alphabetic character, left-justified and blank filled within
the field. This field is for application-to-application connections. For device-to-
application connections, this field can contain the following:

The network software alone determines the next application program that the device
is connected to, or disconnects the device if that is an appropriate action.

NVF

command
NVF reinitiates the login sequence appropriate for the device or disconnects the
device from the host. The following commands are valid:

BYE or
L060UT

HELLO

or

LOGIN

Causes the device to be disconnected from the host.

Reinitiates login for the device. If dialog is possible and
required, the login prompting sequence begins.

Valid
appli-
cation
name

The device at the other end of the logical connection is switched (without NVF
prompting dialog) to connection with the indicated application, if possible. The
name placed in the field must be the element name used to define the referenced
application program in the validation file (VALIDUs).

Figure 3-9. End-Connection (CON/END/R) Supervisory Message Format

ta

ta

end

acn

59 51 49 43 35 23

con 1 end unused acn unused

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 63-| . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ENDD.

Application connection number assigned by the network software to the program end of the logi-
cal connection that has been terminated by the CON/END/R message to which this message is a
response. After issuing this message, the network software can reassign this application con-
nection number to another logical connection with the same program. You can access this
field with the reserved symbol CONACN, as described in section 4.

Figure 3-10. Connection-Ended (CON/END/N) Supervisory Message Format

3-16 60499500 R

Figure 3-11 shows the most common message sequences
in the process of establishing a connection between
two applications.

In this figure, arrows indicate the direction of

transmission of each message. The general term
Network Access Method (NAM) indicates the network
host software sending or receiving the message,
regardless of the software module actually involved.

All three sequences begin when the first application
program issues the asynchronous supervisory message
shown in figure 3-12. This request-application-
connection message causes the network software

either to issue the asynchronous application-
connection-reject message shown in figure 3-13, or

to use a message sequence similar to that used for

device-to-application connections. If the latter

occurs, both application programs receive the form

of the asynchronous connection-request supervisory

message with the form shown in figure 3-14. Both
programs may accept the connection by issuing the

connection-accepted asynchronous supervisory

message shown in figure 3-4. If so, then both must
exchange the initialized-connection and connection-
initialized messages of figures 3-6 and 3-7 with the

network software before any data can be transmitted
on the logical connection.

Application 1 NAM Appl ication 2 Message

CON/ACRQ/R

CON/REQ/R

CON/REQ/R

-*— CON/REQ/N

CON/REQ/N

FC/INIT/R

FC/INIT/R

FC/INIT/N

The requested logical connection is establi shed and enabled for input and output.

Application 1 NAM Appl ication 2 Message

CON/ACRQ/R

-< ;—
Application program 2 is not available . The logical

CON/ACRQ/A

connection is not established.

Application 1 NAM Appl ication 2 Message

CON/ACRQ/R

CON/REQ/R

CON/REQ/R

CON/REQ/A-<—

>
~<

CON/REQ/N

CON/CB/R

CON/END/

R

CON/END/N

Application program 2 rejects the logical connection.

Figure 3-11. Application-to-Application Connection Supervisory Message Sequences

60499500 R 3-17

ta

5958 55 52 49 47 43 39 35 31 27 23 17 15 7

con acrq lid

namel name2

A1 dbl dbz abl ubl ubz res

res res ws dp Is fa en cud I res

res

res

fact fac

•

•

facl fac

prid

udata (0-124 octe ts)

ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

con Primary function code 6316 . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

acrq Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

lid Logical Identifier. It is optional but at least one of the parameters LID/NAME2, must be
specified for interhost connections.

If a logical identifier is specified, then that LID should have been previously specified in
the LIDCHid file. (See NOS IHB.) If a LID is specified and MAME2 is not specified, then a

physical identifier (PID) that is linked to NAM at the time of issuing the CON/ACRQ message
is used as NAME2 in the OUTCALL search.

If both LID and a NAME2 parameters are specified, then NAHE2 is assumed to be a PID, and must
have been previously specified as a legal PID for the LID in the LIDCHid file, and the PID
must be linked to NAM at the time of issuing a CON/ACRQ message.

Note: For NAM to be able to detect that a PID is Linked to NAM, the PID must have been
previously used as a PID=xxx parameter in an OUTCALL statement in the LCF previously created
by NDL.

namel Outcall Identifier, 1-7 alphanumeric characters with a leading alpha, left justified and
blank-filled. This parameter is used to uniquely identify the appropriate OUTCALL definition
that establishes a connection to another application.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 1 of 3)

• 3-18 60499500 S

name2 OutcalL Identifier, 1-3 alphanumeric characters, Left justified and blank-filled. This
parameter is optional (see LID parameter); when explicitly specified in the CON/ACRQ message,
or when implied by the LID, together with NAME1, it is used to select the appropriate OUTCALL
definition from the collection of outcall definitions as previously specified by the Network
Definition Language OUTCALL statement during the creation of the Local Configuration File
(LCF). Thus the combination of NAME1 and NAME2 (implicit or explicit) must appear as NAHE1
and NAME2 or PID on an OUTCALL statement. For intra-host connections, both the LID and the
PID may be zero.

If the application supplies its own outcall block, then the explicit or implicit PID must
have appeared on a PID parameter in the OUTCALL statement of a previously created LCF.

The parameters that follow (A1 through udata) are application supplied OUTCALL parameters.
An application may supply its own OUTCALL parameters if it is a privileged application (has
an SSJ= entry point, or a non-zero SSID). In this case, these parameters do not need to
appear in the OUTCALL statement in the LCF.

A1 Flag indicating priority.
= No

1 = Yes

dbl Downline block limit. Downline blocks that can be outstanding between the host computer
(i.e., NAM) and the other end of this logical connection. The value chosen determines how
many blocks of data the NPU queues from the total number of outstanding blocks (APL parameter
value) of the size specified by the dbz. This parameter is optional and has a range of 1 <
dbl < 7.

-

dbz Downline block size. The recommended maximum number of 8-bit character bytes in any network
data block sent on the connection. This field can have values < dbz < 20, where 0, 1 both
indicate 100-byte blocks.

abl Application block limit. Specifies the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any time. This field has the range 1 < abl < 7. You can
access this field with the reserved symbol CONABL, as described in section 4.

ubL Upline block limit. This parameter specifies the maximum number (1 < upblim£31) of blocks
that the NPU can have outstanding (unacknowledged) to the calling host. This parameter is
meaningful only for X.25 connections.

ubz Upline block size. This parameter specifies the maximum number (1 < upsize £2000) of bytes
that the NPU can send to the calling host in a block. This parameter is only used for X.25
links.

ws Send window size. (Applicable on Public Data Network A-A connections only. Ignored on other
A-A connections.)

dpls Send data packet Length. (Applicable on Public Data Network A-A connections onLy. Ignored
on other A-A connections.)

facn Number of facility groups. (Applicable to Public Data Network A-A connections only.)

cudl Length of call user data (in octets).

facl Facility codes length, within the CM word. (Applicable to Public Data Network A-A
connections only.)

fac Facility codes. (Applicable to Public Data Network A-A connections only.)

P rld Protocol ID. (Applicable to Public Data Network A-A connections only.) 1-8 hexadecimal
digits, left justified, zero filled. If CUDL * 0, then only the first 6 hexadecimal digits
will be passed on to the PDN, the Last two hexadecimal digits will be zeroed.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 2 of 3)

60499500 S 3-19 •

udata Call user data. If the destination host is a NOS system running network products, the first

12t octets must be of the form SSS DD AAAAAAA, where:

SSS

DD

AAAAAAA

is the 3 ASCII character equivalent of the SNODE (sendng node number) value,

right justified, zero-character filled.

is the 2 ASCII character string equivalent of the DHOST (destination host

number) value, right justified, zero-character filled.

is the 7 ASCII character string equivalent of the called applica- tion's

application name, left justified, blank-character filled.

The remainder of the UDATA filled (0-112 octets) will be passed to the called application as

user data.

At any rate, the called host/application if accessed through a public data network must be

able to support the Fast Select Facility, if more than 12 octets of information are specified.

Note: For applications accessing foreign hosts through a public data network the 4 octets of

the PRID field and the (up to) 124 octets of the UDATA field are combined into the (up to)

128 octets of used data as defined by the CCITT recommendation for X.25 networks.

tAn octet is 8 bits of information.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 3 of 3)

ta

59 51 49 43 35 17

con 1 acrq re abn reserved

namel name2

ta

acrq

Symbolic address of the application program's text area receiving this asynchronous super-

visory message.

Primary function code 6316 . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 2. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

Reason code, specifying the cause for rejecting the connection request. The field is

actually made up of two 4 bit subfields, rc1 and rc2. The rc1 field comprises bits 40-43 and

the rc2 field comprises bits 36-39.

The rc2 field is used so that the application can determine what action to take when it

receives a CON/ACRQ/A message and it provides some general information about the source of

the trouble. This field can have the following values:

1 = Critical error in call request detected by source host (onLy LID/PID/NDL

configuration changes or application code changes would solve the problem).

2 = Critical error in call request detected by destination host.

3 = Source host temporarily cannot make the connection (resources are currently not

available, but they might become available without operator intervention).

4 = Destination host temporarily cannot make the connection.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 1 of 4)

• 3-20 60499500 S

5 = Source host cannot make the connection for an indefinite period of time (resources
can be made available by operator intervention such as enabling a LID/PID, network
element, or bringing up a system or subsystem).

6 = Destination host cannot make the connection for an indefinite period of time.

Thus if rc2 =1 or 2, the application would not try establishing the connection again, it
would notify the user and/or operator that the connection is not possible.

If rc2 = 3 or 4 then the application can retry the CON/ACRQ message after a shorter period of
time, and if rc2 = 5 or 6 then it will retry the CON/ACRQ after a somewhat longer period of
time.

The rd field is used in combination with the rc2 field to uniquely identify the exact source
of the trouble, so that the user/operator can take the appropriate action to fix the
problem. The full 8 bit reason code field can therefore have the following values:

2 = Network error detected by destination host. Contact system analyst at destination
host.

4 = Connection number conflict between source and destination host. Retry connection
request.

17 = Illegal LID/PID combination was specified. Correct LID/PID in OUTCALL block.

18 = Called application is not defined in system record (CONTNAP) at destination host.
Contact system analyst.

19 = Network Validation Facility (NVF) temporarily cannot process connection request.
Retry later.

20 = Called application cannot accept any more connections and another copy of the
application cannot be started up. Retry later.

22 = Called application is not running and cannot be started automatically. Contact
system anaLyst to start up called application.

33 = Calling application is not privileged, i.e., it is not allowed to issue OUTCALLS.
Contact system analyst to make the application a privileged application in the LCF.

34 = OUTCALL block has facility parameters greater than 4 octets in length. Correct the
OUTCALL block.

35 = NAM temporarily cannot complete the connection request because the (logical) link
to the destination host is not available. Retry later.

37 = Specified PID is valid but is currently not available. Retry later.

38 = Called application is disabled. Contact system analyst to enable the application.

49 = Application specified its own OUTCALL parameters but there was no corresponding
OUTCALL entry in the LCF for the same PID. Correct the OUTCALL parameters in the
CON/ACRQ/A.

50 = OUTCALL block had user parameters greater than 124 octets in length. Correct the
OUTCALL block.

53 = Source host is not allowing any new connections because it is in idle or disabled
state. Retry later.

54 = Destination host is not allowing any new connections because it is in idle or
disabled state. Retry later.

65 = Application specified its own OUTCALL parameters but there was no matching OUTCALL
entry in the LCF. Correct the OUTCALL parameters in the CON/ACRQ/R.

66 = Destination host could not find a matching INCALL block in its LCF. Correct the
OUTCALL block.

81 = Calling application has already reached its maximum number of allowed connections.
Retry later.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 2 of 4)

60499500 S
3-21'

82 = Name of application specified in C0N/ACR9 is invalid. Correct the application.

97 = Retry limit has been reached for calling application. No more application to

application connection requests (CON/ACRQ/R) should be issued. The reason codes

for the previous CON/ACRQ/A should be analyzed.

98 = Destination host could not find a matching INCALL block in the LCF with a matching

facility code. Correct the facility code in the OUTCALL block.

100 = Network Validation Facility (NVF) in the destination host has not netted on yet.

Retry later.

114 = Application requested Fast select but matching INCALL block in LCF at the

destination host does not have Fast select specified. Correct the OUTCALL block to

not select Fast select.

129 = No X25 TIP in NPU at source host. Contact system analyst to rebuild CCP with X25

TIP.

130 = Error in incoming call packet header. Contact system analyst about possible PSN

problem.

132 = Unknown packet from remote, i.e., the packet received is not a call accepted or

call connected. This is assumed to be caused by a call collision. Retry later.

133 = No available logical channel at source host, i.e., active number of SVCs are

greater than enabled SVCs. Contact the system analyst about enabling additional

SVCs.

134 = No available logical channel at destination host, i.e., active number of SVCs are

greater than enabled SVCs. Contact the system analyst at the destination host to

enable some more SVCs.

145 = X25 subtip not available in NPU at source host. Contact system analyst for

rebui Iding CCP.

146 = X25 subtip not available in NPU at destination host. Contact system analyst at

destination site for rebuilding CCP.

147 = NPU at source host temporarily has no buffer space to support the connection.

Retry later.

148 = NPU at destination host temporarily has no buffer space to support the connection.

Retry later.

161 = Problem detected by X25 network at local host. PSN CCC=13. Local procedure

error. Clear problem with PSN administration.

162 = Remote host not known. Correct DD field in UDATA in OUTCALL entry in the LCF or in

the CON/ACRQ/R message.

163 = No connection available, i.e., all SVCs (outside lines) have been used. Retry

later.

164 = Problem detected by X25 network at destination host. PSN CCC=1. Number at

destination host is busy. Retry later.

165 = X25 line is down at source host. Retry later.

166 = X25 line is down at destination host. Retry later.

178 = Unknown subtip connection; i.e., the PRID field is not CO (PAD) or C1 (A-A). Fix

the PRID field in the OUTCALL entry in the LCF or in the CON/ACRQ/R message.

180 = Problem detected by X25 network. PSN CCC=5. PSN congestion. Retry later.

182 = CCP cannot complete the connection because the (logical) link at the destination

host is not up (enabled). The system analyst should be contacted to enable the

logical link.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 3 of 4)

>3_22 60499500 S

abn

reserved

namel

name2

194 = Problem detected by X25 network. PSN CCC=3. Invalid Facility request. Change the
facility specification in the OUTCALL.

195 = Connection number conflict between source host and source NPU. Retry later.

196 = No connection number available in NPU at destination host. Retry later.

198 = Problem detected by X25 network. PSN CCC=15. PPOA out of order. Retry Later.

210 = Problem detected by X25 network. RSN CCC=21. Incompatible destination. Clear the
problem with the RSN administration.

213 = CCP cannot complete the connection because the (logical) link at the source host is
not up (enabled). The system analyst should be contacted to enable the Logical
link.

214 = Remote host not available. Retry later.

225 = ILlegaL port number in OUTCALL block. Correct port number in OUTCALL block.

226 = Problem detected by X25 network. PSN CCC=19. Reverse charging not subscribed to.
Change OUTCALL to not request reverse charging.

230 = Problem detected by X25 network. PSN CCC=9. Destination host out of order. Wait
until destination comes back up; then retry.

242 = Problem detected by X25 network. PSN CCC=29. Fast select not subscribed to.
Change OUTCALL to not use fast select.

You can access this field with the reserved symbol RC, as described in section 4.

Application block number from the application block header of the CON/ACRQ/R supervisory mes-
sage of your application. You can access this field with the reserved symbol CONABN, as
described in section 4.

Reserved by CDC. Reserved fields contain zero.

This field contains the same value as your program used in the CON/ACRQ/R message to which
this message is a response. You can access this field with the reserved symbol CONANM, as
described in section 4.

This field contains the same value as your program used in the CON/ACRQ/R message to which
this message is a response. You can access this field with the reserved symbol CONHID, as
described in section 4.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 4 of 4)

ta

59 51 49 43 35 31 23 20 1716 12 3

con req res aen abl res dt res

res shost

res abn res dbz

res ubz res cud I

udata (0-112 octets)

Figure 3-14. Connection-Request (CON/REQ/R) Supervisory Message Format,
Application-to-Application Connections (Sheet 1 of 2)

60499500 S 3-23 •

ta Symbolic address of the application program's text area receiving this asynchronous super-

visory message.

con Primary function code 6316 . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of reserved symbol CON.

req Secondary function code 0. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol REQ.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned to this logical connection; 1 < minacn < acn < maxacn

< 4095, where minacn and maxacn are minimum and maximum values established by the application

program in its NETON call. (See section 5.) You can access this field with the reserved

symbol CONACN, as described in section 4.

abl Application block limit, specifying the maximum number of data or synchronous supervisory

message blocks the program can have outstanding (unacknowledged as delivered by the network

software) on this connection at any time. This value is established when the connection is

described in the local configuration file. If your application program initiated the

connection request, this value comes from the ABL parameter of the NDL OUTCALL statement used

by your program; if another application program initiated the connection request, the initial

value comes from the ABL parameter of the NDL INCALL statement used by that program. This

value is also supplied from the ab1 in the CON/ACRQ if the application supplies its own

OUTCALL parameters. This field has the range 1 £ abl < 7. You can access this field with

the reserved symbol CONABL, as described in section 4.

dt Device type of the connection. This field can have the values:

5 Application-to-application connection within the same host

6 Application-to-application connection between two hosts

You can access this field with the reserved symbol CONDT, as described in section 4.

shost Source host identifier. This field contains the node number of the host in which the other
application program runs. The value is in 6-bit display code characters, left-justified with

blank fill.

abn Application block number. This field contains the abn value assigned by your application

program to the C0N/ACR9/R supervisory message if your program initiated the connection

request; otherwise, this field contains a zero. You can access this field with the reserved

symbol CONAABN, as described in section 4.

dbz Downline block size. The recommended maximum number of 8-bit character bytes in any network

data block sent on the connection. If your application program initiated the connection
request, this value comes from the DBZ parameter of the NDL OUTCALL statement used by your

program; if another application program initiated the connection request, the initial value
comes from the DBZ parameter of the NDL INCALL statement used by that program. This field

can have the values 1 < dbz £ 2043. You can access this field with the reserved symbol

CONDBZ, as described in section 4.

ubz Upline block size. The number of 8-bit bytes (in multiples of 100) the network will deliver

in each upline network data block on the connection. If your application program initiated
the connection request, this value comes from the UBZ parameter of the NDL OUTCALL statement
used by your program. If another application program initiated the connection request, the

initial value comes from the UBZ parameter of the NDL INCALL statement used by that program.

This field can have the values < ubz £ 20, where and 1 both indicate 100-byte blocks. If

ubl is not specified, the default value of 2 is used. You can access this field with the

reserved symbol C0NUBZ, as described in section 4.

cudl The call for the user's data length expressed in the number of octets. This field is set to

zero if there is no call user data.

udata Optional call user data. This is the call user data specified by the calling application in

the C0N/ACRQ supervisory message from a NOS host; or, it is the 13th through 128th octets of
call user data from public data networks (PDNs). Allows applications to send a small amount
of data to each other without actually establishing a connection via the fast select facility
on PDNs.

Figure 3-14. Connection-Request (C0N/REQ/R) Supervisory Message Format,
Appli cation-to-Application Connections (Sheet 2 of 2)

3-24 60499500 S

Neither application program can send or receive any

supervisory messages or data blocks on a connection
until connection initialization processing has been

completed.

If either program cannot complete or service the

logical connection, it can reject the connection
request by issuing the asynchronous connection-
rejected message described in figure 3-5. When
this occurs, the other application program must
exchange the connection-broken, end-connection, and
connection-ended asynchronous supervisory messages
with the network software. No further action is

required by the rejecting application program.

If either application program does not follow the
message sequences shown in figure 3-15, a logical-
error asynchronous supervisory message is issued.

This message is discussed at the end of this
section.

A logical connection established between two appli-
cation programs does not necessarily have the same
application connection number for both applications.
The network software assigns the application con-
nection number to each end of the logical connection
independently. The application connection number
is unique within all connections of each application
program; for example, the same logical connection
can have an acn parameter of 2 for application
program A (which accepted one previous connection)
but an acn parameter of 4 for application program B
(which accepted three previous connections).

Privileged applications can specify OUTCALL param-
eters in optional words 2-10 of the CON/ACRQ/R
sequence. This allows the aplications to have more
control over an outgoing call request. The appli-
cation specifies a complete OUTCALL block except
for the SNODE, DNODE, PORT, and DTE address param-
eters. NAM obtains these parameter values from the
first OUTCALL statement defined in the LCF that has
a matching NAME2 (PID)

.

Application NAM Message

The timer for the logical connection is reset to

zero.

Application 1 NAM Application 2 Message

The timer for the Logical connection is reset to

zero.

Figure 3-15. Connection Monitoring
Message Sequences

MONITORING CONNECTIONS

As soon as a logical connection is completely ini-

tialized by the network software and an application
program, the network software begins incrementing
an inactivity timer. Each time a network data block

or synchronous supervisory message is transmitted
on the logical connection, this inactivity timer is

reset to zero. Any time 10 minutes elapse without

any transmission on a logical connection, the net-
work software uses one of the supervisory message
sequences shown in figure 3-15 to inform the appli-

cation program of the condition.

The connection monitoring sequence consists of the

asynchronous inactive-connection message shown in

figure 3-16. This message is advisory only; no

response is required from the application program.

The network software automatically resets the in-
activity timer to zero as soon as the message is

issued.

ta

ta

fc

inact

59 51 49 43 35 23

fc inact unused acn unused

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 83-| . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 4. You can access this fieLd with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol INACT.

Application connection number assigned by the network software to the program end of the
logical connection reported as inactive. The value in this field is always nonzero and is

the value used in an FC/INIT/N message processed by the application program. You can access
this field with the reserved symbol FCACN, as described in section 4.

Figure 3-16. Inactive-Connection (FC/INACT/R) Supervisory Message Format

60499500 S 3-24.1

TERMINATING CONNECTIONS

A logical connection can be terminated any time

after establishment of it begins. This disconnec-
tion can be initiated by an application program or

by the network software. These two possibilities
have separate corresponding supervisory message
sequences, as shown in figure 3-17.

Logical connection termination is initiated by the

network whenever such conditions as hardware fail-

ure, a dlalup line being disconnected without a
formal logout by a terminal operator, and failure
of another (connected) application program occur.
The general case of this is shown by the second
message sequence in the figure, a sequence already
encountered as part of the connection establishment
sequences discussed earlier in this section.

The sequence begins when the network software sends

the connection-broken message of figure 3-8 to the

application program. The network software discards
any network data blocks or synchronous supervisory
messages sent by the application program on the

connection between the time this asynchronous
supervisory message is queued and the time it is
processed by the application program. When the

application program receives this message, it can
still fetch any upline blocks queued on the logical
connection. As soon as it has fetched all out-
standing blocks, the application program must issue
an end-connection message of the form shown in
figure 3-9. The network software responds with the

asynchronous connection-ended message described in
figure 3-10. The application connection number of
the terminated logical connection then becomes
available for use with another logical connection.

Application NAM

—
Message

CON/END /R

CON/END /N

The Logical connection is terminated by the
application program. The application connection
number can be reassigned to another logical con-
nection by the network software.

Application

-<

NAN Message

CON/CB/R

The logical connection is terminated by the net-

work. The application program can salvage data
in transit by fetching any blocks queued.

CON/END /R

CON/END /N

The application connection number can be
reassigned to another Logical connection by the
network software.

Figure 3-17. Connection Termination
Message Sequences

| 3-24.2 60499500 S

Application-initiated termination of a logical con-
nection occurs whenever the application program
processes a terminal operator's request to end con-
nection, or in any other situation where the appli-
cation program has finished exchanging blocks over
the logical connection. The message sequence is the

| first one shown in figure 3-17. This sequence
begins when the application program issues an asyn-
chronous end-connection supervisory message.

The format of the end-connection message is
described in figure 3-9. This message permits the
application program to influence connection switch-
ing or disconnection processing performed for the
device after it is disconnected from the applica-
tion program. The effects of this end-connection
message vary according to the aname field contents
and whether the device is a batch or interactive
console device.

When a zero aname parameter is used, a console
device is prompted for the name of the next program
the device should be connected to, unless the user
is allowed access only to the disconnected applica-
tion program. In this instance, the device's log-
ical connection is processed by NVF as if an aname
value of BYE or LOGOUT was specified.

When a valid application name is used in the aname

| field, a console connection is disposed of in one
of two ways. If the specified application program
is available and the login user name of the console
is allowed access to it, the console connection is
switched directly to the new application program.
This switch is performed without dialog between NVF
and a console operator. The network software per-
forms the switch by sending a connection-request
supervisory message for the console to the specified
application program.

If the specified application program is not avail-
able or the login user name does not permit the
terminal to access that program, the console con-
nection is not switched. In this case, a console
is informed of the condition with the message
APPLICATION NOT PRESENT or USER ACCESS NOT POSSIBLE
- CONTACT NETWORK ADMIN. The terminal operator is
then prompted for another application program name,
unless the console was configured for a full auto-
matic login procedure and the user name in that
procedure validates for access only to the discon-
nected application program. In this instance, all
of the terminal's ended logical connections are
processed by NVF as if an aname value of BYE or
LOGOUT was specified.

When an NVF command is used in the aname field,
disconnection processing depends on the command
used and whether the device is a batch or inter-
active one. The HELLO or LOGIN command causes NVF
to initiate a manual login dialog with an inter-
active device. The BYE or LOGOUT command causes
NVF to disconnect a console device from the host.

When your program ends a connection with a passive
device (a batch device of device types 1 through
4), any aname value you supply is ignored. NVF '

disposes of the passive device connection in the
same manner as it does the device's owning console
connection. That is:

If your program already disconnected the owning
console for the device, NVF attempts to connect
the device to the same program as the owning
console; if the owning console is disconnected
from the host, NVF disconnects the passive
device as well.

If your program has not already disconnected
the owning console for the device, NVF attempts
to reconnect the device to your program. If
your program rejects the reconnection, NVF
keeps the device connected to itself until your
program disconnects the owning console for the
device.

On dialup lines, consoles without connections to
hosts are assigned to a disconnection queue. When
all consoles on the dialup line are assigned to the
disconnection queue, a timer for the line is
started. When the timer for the line expires, the
dialup line is physically disconnected. This dis-
connection causes physical disconnection of all
devices on the line, including any passive devices I

still connected to an application program (the
connection is broken from the application pro-
gram's viewpoint). The network software effectively
hangs up the telephone, but the devices can be I
reconnected after a new dial-in procedure.

On hardwired lines, no disconnection occurs when
all interactive devices on the line are timed out. I
Because the line is not disconnected in this I

instance, passive devices still connected to appli-
|

cation programs remain connected to those programs.

While a console is queued for disconnection, any
terminal operator keyboard entry removes all the
devices of that terminal from the disconnection
queue and reconnects them to NVF for a new manual
login procedure. The data entered is discarded by
the network software and therefore can be anything
the operator wishes.

MANAGING CONNECTION LISTS

There are five asynchronous supervisory message
sequences used for connection list management. Each
sequence consists of one message, issued by the
application program.

Three of these sequences, as shown in figure 3-18,
control list polling and list assignment. The
other sequences, shown in figure 3-19, control the
duplexing mode used during list processing.

CONTROLLING LIST POLLING

Connection list polling control consists of enabling
or disabling the fetching of input blocks from a
single logical connection when the list that the
connection is assigned to is polled. All connec-
tions are initially enabled for list processing
without application program action. Each time the
application program polls the list number that it
has associated with a specific connection, blocks
queued from that connection can be returned to the
program.

60499500 R 3-25

Application NAM

—
Message

LST/OFF/R

When the list number associated with the affect-
ed logical connection is next polled by the
application program, no blocks will be returned
from the connection.

Application NAN Message

LST/ON/R

When the list number associated with the affect-
ed logical connection is next polled by the
application program, blocks might be returned
from the connection.

Application NAM Message

LST/SWH/R

When the new list number associated with the
affected logical connection is next polled by
the application program, blocks might be
returned from the connection.

Figure 3-18. Connection List Polling Control
Message Sequences

Application NAM

—
Message

LST/FDX/R

When the list number associated with the
affected logical connection is next polled by
the application program, blocks can be returned
from the affected logical connection regardless
of the previous types of blocks output on the
connection.

Application NAM Message

LST/HDX/R

When the list number associated with the
affected logical connection is next polled by
the application program, blocks of application
block type 1 or a single block of block type 2

are returned from the affected connection onLy
if a block of block type 2 or a LST/ON/R
message has been sent downline on the
connection since the last upline block of block
type 2 was delivered to the program. In
effect, message input to the program is

disabled until message output is complete..

Figure 3-19. Connection List Duplexing
Message Sequences

If the program requires the list to be polled
without returning any blocks queued from the
connection, the asynchronous supervisory message
shown in figure 3-20 causes the next poll of the I
list to exclude the connection. This turn-list-
processing-off message effectively disables list
processing for the connection. This message is not
acknowledged by the network software and remains in
effect until canceled by the asynchronous turn-list-
processing-on message shown in figure 3-21.

|

The turn-list-processing-on message is issued by
the application program to enable list processing
and input for a specific connection. This message
causes the next poll of the list number associated
with the indicated connection to include the con-
nection's data block queue. The network software
does hot acknowledge this message. If the message
is issued when list processing already has been
enabled for the connection, no error occurs. The
message remains in effect until canceled by a turn-
list-processing-off supervisory message.

Enabling list processing for a logical connection
does not cause a queued block to be returned from
that connection the next time the connection's list
is polled. Connections on a list are searched in a
loop starting with the connection following the |
connection from which data was last obtained.
Disabled connections are skipped during the polling
process; enabled connections and connections in
half-duplex mode for which no output has been sent
are included in the polling process. |

The list number associated with a specific connec-
tion is determined by the application program when
it accepts the logical connection. This list num-
ber can be changed while the connection exists by
issuing the change-connection-list supervisory mes-
sage shown in figure 3-22. The network software |
does not acknowledge this asynchronous message, but
the change is effective at the time of the next
poll of the new list number. After the change-
connection-list message is issued by the application
program, polls of the old list number cannot return
blocks queued from the affected connection.

Polling of connection lists is performed through
application calls to the AIP routines NETGETL and
NETGTFL. These routines are described in section 5.

CONTROLLING LIST DUPLEXING

Upline and downline transmissions on logical con-
nections usually occur in a full-duplex mode. In
full duplex mode, the number and occurrence of com-
plete upline message blocks is not related in any
way to the number or occurrence of downline message
blocks. Message input and output is logically
independent and can become unsynchronized.

The list processing feature of NAM can be used in
conjunction with a set of asynchronous supervisory
messages to avoid loss of input and output synchro-
nization on a logical connection. These messages
can be used to switch the connection to and from a
half duplex mode of input and output.

3-26 60499500 R

ta

1st

off

ta

59 51 49 43 35 23

1st off unused acn unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code C0-| o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reverse symbol OFF.

Application connection number assigned by the network software to the program end of the Logi-

cal connection for which list processing is being disabled. The value used in this field
must be the value used in a CON/REQ/R message processed by the application program. You can
access this field with the reserved symbol LSTACN, as described in section 4.

Figure 3-20. Turn-List-Processing-Off <LST/0FF/R) Supervisory Message Format

ta

1st

ta

59 51 49 43 35 23

1st on unused acn unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code CO-]^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ON.

Application connection number assigned by the network software to the program end of the logi-
cal connection for which list processing is being enabled. The value used in this field must
be the value used in a CON/REQ/R message processed by the application program. You can
access this field with the reserved symbol LSTACN, as described in section 4.

Figure 3-21. Turn-Li st-Processing-On (LST/ON/R) Supervisory Message Format

ta

ta

1st

swh

acn

nualn

59 51 49 43 35 23 5

1st swh unused acn unused nualn

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code C0i6. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol SWH.

Application connection number assigned by the network software to the program end of the logi-
cal connection being switched to a new connection list. The value used in this field must be
the value used in a CON/REQ/R message processed by the application program. You can access
this field with the reserved symbol LSTACN, as described in section 4.

The number of the new connection list to which the logical connection is reassigned; 0^
nualn _< 63. You can access this field with the reserved symbol LSTALN, as described in

section 4.

Figure 3-22. Change-Connection-List (LST/SWH/R) Supervisory Message Format

60499500 R 3-27 •

In half duplex mode, delivery of an upline block of

I

block type 2 or 7 turns off additional list proc-
essing for the connection until a downline block of
block type 2 or 7 or a LST/ON/R message is sent on
the same connection. In effect, application program
input obtained through NETGETL or NETGTFL calls must
alternate with output for the connection, because
no other sequence of input and output is possible
using those calls.

An application program begins network access with
its AIP list processing code automatically enabled
for full-duplex operation of all logical connec-
tions. The program can change a single connection
to half-duplex operation at any time during network
access by issuing the asynchronous supervisory mes-

I sage shown in figure 3-23, with the appropriate
application connection number included in the acn
field. Alternatively, the program can change all
existing and any future connections by issuing the
same supervisory message with an acn field value of
zero. There is no response to either form of this
message.

When half-duplex operation begins for a connection,
the connection is initially enabled or disabled for
list processing, depending on the setting of the
reserved symbol LSTDIS in the LST/HDX/R supervisory

| message shown in figure 3-23. If LSTDIS is set to
zero, then the connection is initially enabled for
list processing via HETGETL or NETGTFL calls. When
such a call returns a block of application block
type 2 or 7 (identifying the last block of an upline
message), NETGETL or NETGTFL calls disable the con-
nection for subsequent list processing.

I

The effects of the latter messages take precedence
over the mode of duplexing operation in effect for
a given connection. In addition, the turn-list-
processing-on message enables the connection for
input, even if no output has been sent.

An application program can change a single connec-
tion back to full-duplex operation at any time
during network access by issuing the asynchronous
supervisory message shown in figure 3-24, with the I
appropriate application connection number included
in the acn field. Alternatively, the program can
change all existing and any future connections by
issuing the same supervisory message with an acn
field value of zero. There is no response to either
form of this message.

I

Use of the turn-on-half-duplex-list-processing
message has no effect on use of the turn-list-
proce8Sing-off or turn-list-processing-on messages.

When full-duplex operation begins for a connection,
the connection is initially enabled for list proc-
essing via NETGETL or NETGTFL calls. The connection
remains enabled until disabled by the previously
described turn-list-processing-off supervisory mes-
sage. Upline delivery of a data block of applica-
tion block type 2 or 7 has no relationship to down- I
line transmission of a block of the same block type.

UBe of the turn-on-full-duplex-llst-processing mes-
sage has no effect on use of the turn-list-
processing-off or turn-list-processing-on mes-
sages. The effects of the latter messages take
precedence over the mode of duplexing operation in
effect for a given connection. If a given connec-
tion has been disabled for any list processing by a
turn-list-processing-off message, it remains dis-
abled after full-duplex operation is turned on for
the connection.

ta

ta

1st

hdx

dis

59 51 49 43 35 23

1st hdx unused acn unused
d
i

s

Application program text area from which this asynchronous supervisory message is sent.

Primary funtion code C016 . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

Secondary function code 4. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol HDX.

Application connection number assigned by the network software to the program end of the logi-
cal connection for which half-duplex list processing is being enabled. The value used in
this field can be either zero or the value used in a CON/REQ/R message processed by the
application program. If acn is zero, all connections are enabled; if acn is nonzero, the
specific connection is enabled. You can access this field with the reserved symbol LSTACN,
as described in section 4.

Disable flag. Set the value of this flag either to 1 if the connection is to be initially
disabled for normal list processing or to if the connection is to be initially enabled for
list processing. You can access this field with the reserved symbol LSTDIS, as described in
section 4.

Figure 3-23. Turn-On-Half-Duplex-List-Processing (LST/HDX/R) Supervisory Message Format

3-28 60499500 R

ta

1st

fdx

ta

59 51 49 43 35 23

1st fdx unused acn unused

Application program text area from which this asynchronous supervisory message is sent.

Primary function code CCW. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

Secondary function code 3. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol FDX.

Application connection number assigned by the network software to the program end of the logi-
cal connection for which full-duplex list processing is being enabled. The value used in
this field can be either zero or the value used in a CON/REQ/R message processed by the
application program. If acn is zero, all connections are enabled; if acn is nonzero, the
specified connection is enabled. You can access this field with the reserved symbol LSTACN,
as described in section 4.

Figure 3-24. Turn-On-Full-Duplex-List-Processing (LST/FDX/R) Supervisory Message Format

If either of the list duplexing control messages is
issued for a connection already operating in the
requested duplexing mode, the extra message is
ignored. If the acn field specified within either
message identifies a nonexistent logical connec-
tion, a logical-error supervisory message is sent
to the application program and the requested change
in duplexing operation does not occur.

If either of the list duplexing control messages is
issued with an acn field value of zero, the duplex-
ing mode of application connection zero remains
unchanged. The asynchronous supervisory message
connection is always enabled for full-duplex opera-
tion on application list zero.

CONTROLLING DATA FLOW
Data to and from console connections has its flow
controlled at both ends of those connections

.

Whenever possible, this control is imposed volun-
tarily by the application program. Conditions out-
side the network, however, can interfere with data
flow. Flow control is therefore also imposed by the
network software in reaction to external conditions

.

When the latter occurs , the application program
must compensate for the effect on data flow.

Because the application program is not directly
involved in the data exchange on batch device con-
nections, the remaining paragraphs in this sub-
section do not apply to application-to-batch device
connections.

Downline flow control is logically separated from
upline flow control. This separates flow control
into an input function and an output function.

Downline flow control is implemented through block
delivery monitoring mechanisms. These mechanisms
involve exchanges of asynchronous supervisory mes-
sages, and the application program's adherence to
data block transmission conventions.

Upline flow is controlled by synchronous supervisory
messages and by the application program's adherence
to data block transmission conventions.

MONITORING DOWNLINE DATA

An application program can send downline blocks
along a particular connection much faster than they
can be output at a device or delivered to another
application. Since NAM and CCP must save these
extra blocks until they are processed by the other
end of the connection, the extra blocks can cause
NAM and CCP to have storage problems. On the other
hand, the same application program might be sending
blocks along another connection at such a slow rate
that the other end of the connection is under-
occupied. Network software provides a set of con-
ventions that allow the application to control the
flow of data between itself and its connections for
increased efficiency in such cases.

A block limit is established for each logical con-
nection; this parameter indicates how many blocks
of data or synchronous supervisory messages an
application program can have outstanding on the
logical connection at any instant. This block limit
is the abl field value included in the connection
request supervisory message. As blocks queue for
delivery to the device or application, a block-
delivered asynchronous supervisory message (figure
3-25) is returned to the application. If the
application program's output exceeds the value of
the block limit, a logical-error asynchronous
supervisory message is returned to the application,
together with the reason for the error, and the
last block is discarded by NAM.

The block-delivered supervisory message is used to
manage flow control; however, receipt of a block-
delivered supervisory message does not in all cases
guarantee that the data block has reached its des-
tination. If the communication line, for example,
fails before a block is completely output on a
terminal device, the application program might
still receive a block-delivered message.

If the application program's output does not exceed
the block limit, but for some reason a block is
lost or unaccounted for, a block-not-delivered
asynchronous supervisory message (figure 3-26) is
returned to the application. Neither the block-
delivered message nor the block-not-delivered mes-
sage requires the application program to issue a
response or acknowledgment message to NAM.

60499500 S 3-29

59 51 49 43 35 23 5

ta fe ack unused acn abn unused

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

fc Primary function code 83-J6. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol FC.

ack Secondary function code 2. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symboL ACK.

acn Application connection number assigned by the network software to the program end of the logi-

cal connection on which the block was delivered. This value is always nonzero and is the acn

value used by the program in the application block header sent with the delivered block. You

can access this field with the reserved symbol FCACN, as described in section 4.

abn Application block number assigned by the application program to the delivered block. This
value is the abn value used by the program in the application block header sent with the

delivered block. You can access this field with the reserved symbol FCABN, as described in

section 4.

Figure 3-25. Block-Delivered (FC/ACK/R) Supervisory Message Format

ta

fc

nak

abn

ta

59 51 49 43 35 23 5

fc nak re acn abn unused

Symbolic address of the application program's text area receiving this asynchronous super-

visory message.

Primary function code 8316 . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 3. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol NAK.

Reason code explaining why the block was not delivered. This field can have the values:

2

thru
255

Reserved for CDC use.

Network software error caused loss of the block in transit; the block can be

retransmitted but might be delivered out of sequence with subsequently
transmitted blocks.

Reserved for CDC use.

You can access this field with the reserved symbol RC, as described in section 4.

Application connection number assigned by the network software to the program end of the logi-

cal connection on which the block was lost. This value is always nonzero and is the acn

value used by the program in the application block header sent with the lost block. You can
access this field with the reserved symbol FCACN, as described in section 4.

Application block number assigned by the application program to the lost block. This value

is the abn value used by the program in the application block header sent with the lost

block. You can access this field with the reserved symbol FCABN, as described in section 4.

Figure 3-26. Block-Not-Delivered (FC/NAK/R) Supervisory Message Format

3-30 60499500 R

This protocol allows the application to control
downline data flow, as follows:

Define two arrays, K and M.

When a connection i is accepted, set K(i)=0 and

M(i)=block limit.

Whenever a block-delivered message is received
for application connection number i, set K(i)=
K(i)-1.

When a break supervisory message is received
for an application-to-application connection,
set K(i)=0.

When a user-break caused user-interrupt super-
visory message is received for a device-to-
application connection, do not set K(i)=0;
block-delivered messages make this unnecessary.

As long as K(i) is less than M(i), set K(i)=
K(i)+1 and output one block on connection i.

The break and user-break caused user-interrupt
supervisory messages included in this strategy
affect downline traffic on a logical connection.
(The break message also affects upline traffic.)
Such messages are sent to the application program
whenever a network condition requires downline
transmission on the connection to be interrupted.

The NPU relies on the application program to decide
when traffic can be resumed. Two sequences of
events are possible when such interruptions occur.
The sequence that occurs depends on whether the
connection involved is with another application
program or with a terminal device.

Application NAM Message

FC/BRK/R

The network software discards all unacknowl-
edged blocks queued for delivery to the other
application.

FC/RST/R

The application program can now resume communi-
cation with the other application.

Figure 3-27. Application-to-Application
Connection Break and Reset

Message Sequence

For device-to-application connections, the following
happens (see figure 3-30):

1. Blocks sent downline by your application program
but not yet delivered to the device are dis-
carded. Discarded blocks are acknowledged as

delivered by NAM.

2. NAM sends an asynchronous user-interrupt super-
visory message with a reason code indicating a
user-caused break (figure 3-31) to your appli-
cation program.

3. NAM queues a synchronous break-indication-marker
supervisory message (figure 3-32) after any data
blocks not yet delivered to your application
program.

For application-to-application connections

,

following happens (see figure 3-27):
the

1. Blocks sent downline by your application pro-
gram but not yet delivered to the other appli-
cation are discarded.

2. Blocks sent upline to your application program
but not yet delivered from the other application
program are discarded.

3. An asynchronous break supervisory message
(figure 3-28) is sent to your application
program. If the connection uses an X. 25 com-
munication line, the side of the X.25 network
originating the break is indicated by a reason
code in the message.

4. Your application program resets its flow control
algorithm, as described previously in this sub-
section.

5. Your application program issues an asynchronous
reset supervisory message, as shown in figure
3-29, as a response to the break message. Until
the reset message is sent, no upline or downline
data can be exchanged on the connection. NAM
sends no response to your reset message.

6. Normal downline (and upline) traffic can now
resume. The first block sent or received oh
the connection that is not a null block marks
the point in traffic where data flow was inter-
rupted.

4. Your application program issues an asynchronous
interrupt-response supervisory message, as
shown in figure 3-33, as a response to the
user-interrupt message. Until this response
message is sent, additional user-interrupt
conditions involving the device are ignored.
NAM sends no response to your user-interrupt-
response message.

5. Your application program processes all pending
input on that connection by issuing NETGET or
NETGETF calls (section 5) until the break-
indication-marker message is received. The
disposition of received data blocks is up to
your application program.

6. Your application program issues a synchronous
resume-Output-marker supervisory message (figure
3-34), as a response to the break-indication-
marker message. Until this message is sent,

downline data sent on the connection is dis-
carded by the network. NAM sends no response
to your resume-output-marker message. Normal
downline traffic can now resume.

If your application program does not complete one
of these sequences properly, it receives an asyn-
chronous logical-error supervisory message. The
logical-error message is described at the end of

section 3.

The user-interrupt message reflects suspension of
downline traffic only. Upline traffic (input) on
the connection is not affected.

60499500 R 3-31 •

ta

fc

brk

rc

aen

ta

59 51 49 43 35 23

fc brk rc acn reserved

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 83-| . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol BRK.

Reason code, explaining the cause of the break condition. This field is nonzero in upline
messages for X.25 connections only. This field can contain the values:

1

thru
4

5

6

8
thru
191

192
thru
255

Reserved for CDC use.

A data communications equipment CDCE) break indicator (reset indication packet)
occurred for the X.25 communication line used by the connection.

A data terminal equipment (DTE) break indicator (reset indication packet)
occurred for the X.25 communication line used by the connection.

Reserved for CDC use.

Reserved for site-defined use.

reserved

You can access this field with the reserved symbol FCRBR, as described in section 4.

Application connection number assigned by the network software to the program end of the logi-
cal connection on which the break occurred. This field always contains a nonzero value
previously used by the application program in an FC/INIT/N message and must be used by the
application program in a subsequent FC/RST/R message before data transmission on the
connection is again possible. You can access this field with the reserved symbol FCACN, as
described in section 4.

Reserved for CDC. Reserved fields must be equal to zero.

Figure 3-28. Break (FC/BRK/R) Supervisory Message Format

ta

fc

rst

ta

59 51 49 43 35 23

fc rst reserved acn reserved

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 83i . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RST.

Application connection number assigned by the network software to the program end of the logi-
cal connection to be reset. This value is always nonzero and must be the acn value received
by the application program in a previous FC/BRK/R message. You can access this field with
the reserved symbol FCACN, as described in section 4.

Figure 3-29. Reset (FC/RST/R) Supervisory Message Format

• 3-32 60499500 R

Application NAM Message Connection

INTR/USR/R Zero

discards all blocks queued fo
request queued input from NAM
lection.

Tne network software acknowledges and
device. Your application program can

another INTR/USR/R affecting this conr

• del
but

ivery to the
cannot receive

The program requests all queued
discard and acknowledge downline

nput from NAN. The
blocks.

network software continues to

** BI/MARK/R Nonzero

Your application program can now
downline blocks.

-* RO/MARK/R Nonzero

resume output to the device. NAN stops discard ing

Figure 3-30. Terminal User-Caused Break Sequence

ta

ta

intr

59 51 49 43 35 23

intr usr re acn unused

Symbolic address of the application program's text area receiving this asynchronous super-

visory message or from which this message is sent.

Primary function code 80i o. You can access this field with the reserved symbol PFC, as

described in section 4. The value of this field is defined as the value of reserved symbol

INTR.

Secondary function code 00. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol USR.

Reason code, explaining the cause of the interrupt condition. This field can contain the

values:

Valid on application-to-application connections only; no predefined meaning.

thru
2

3 On device-to-application connections, the terminal operator used the key or

entered the character defined for the device as generating a user-break-1
condition; discard all blocks received until a BI/MARK/R synchronous supervisory

message is received. On application-to-application connections, no predefined
meaning.

4 On device-to-application connections, the terminal operator entered the character

defined for the device as generating a user-break-2 condition; discard all blocks

received until a BI/MARK/R synchronous supervisory message is received. On

application-to-application connections, no predefined meaning.

5

thru
255

On device-to-application connections, refer to figure 3-39. On

application-to-application connections, no predefined meaning.

Application connection number assigned by the network software for the connection sending the

user-interrupt request. You can access this field with the reserved symbol INTRACN, as

described in section 4.

Figure 3-31. User-Interrupt (INTR/USR/R) Supervisory Message Format

60499500 R 3-33

ta

ta

59 51 49 43

bi nark unused

59 55 47 43 41 35

bi mark unused

act=2

act=3

ta Symbolic address of the application program's text area receiving this synchronous super-

visory message.

bi Primary function code CAi . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol BI.

mark Secondary function code 0. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol HARK.

Figure 3-32. Break-Indication-Marker (BI/MARK/R) Supervisory Message Format

ta

intr

rsp

ta

59 51 49 43 35 23

intr rsp acn unused

Symbolic address of the application program's text area from which this asynchronous super-

visory message is sent.

Primary function code 80i o. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01. You can access this field with the reserved symbol SFC, as

defined in section 4. Its value is defined as the value of the reserved symbol RSP.

Application connection number assigned by the network software for the connection on which the

user-interrupt-response supervisory message was sent. The value placed in this field must be

the device connection value used in the INTR/USR/R message to which this message is a response.

You can access this field with the reserved symbol INTRACN, as described in section 4.

Figure 3-33. Application-Interrupt-Response (INTR/RSP/R) Supervisory Message Format

ta

ro

mark

ta

ta

59 51 49 43

ro mark unused

59 55 47 43 41 35

ro mark unused

act=2

act=3

Symbolic address of the application program's text area from which this synchronous super-

visory message is sent.

Primary function code CB^ . You can- access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol RO.

Secondary function code 0. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol MARK.

Figure 3-34. Resume-Output-Marker (RO/MARK/R) Supervisory Message Format

3-34 60499500 R

CONTROLLING OR BYPASSING
UPLINE AND DOWNLINE DATA

Several asynchronous supervisory messages allow your
application program to:

Control the flow of upline and downline data to

both ends of an application-to-application con-

nection.

Control the flow of downline data on a device-
to-application connection.

Bypass data blocks or synchronous supervisory

messages on an application-to-application con-

nection; this allows your application program
to control the flow of downline data on an

application-to-application connection if both
programs recognize a method of doing so.

The sequences and forms of the messages used depend
on whether the connection is with another applica-
tion program or with a terminal device.

Discarding Upline and Downline Data on

Application-to-Application Connections

Your program can discard all upline and downline
data queued between itself and another application

program by sending the asynchronous break super-

visory message shown in figure 3-28. NAM does not
send a response for this message to your program.

The rest of the steps shown in figure 3-27 then

occur

:

Discarding Downline Data on

Device-to-Application Connections

Your program can discard all downline data queued
between itself and a terminal device by sending the
asynchronous application-interrupt supervisory mes-
sage shown in figure 3-35, using a parm field value
of 2.

The first set of steps shown in figure 3-36 then
occurs:

1. The network begins discarding downline blocks

queued for delivery to the device. Upline
blocks queued for delivery to your application
program are not affected.

2. Your application program sends a synchronous

terminate-output-marker supervisory message, as
described in figure 3-37. This message indi-

cates to the network software the place In the

downline data flow where it should stop dis-
carding blocks.

3. The network sends your application program an
asynchronous interrupt-response supervisory

message (figure 3-33). Until this message is

received, your program cannot send another
application-interrupt message affecting the

same connection.

4. Normal downline data traffic can now resume.

If your application program issues another
application-interrupt message before receiving an

interrupt-response message, it receives an asyn-

chronous logical-error supervisory message. The
logical-error message is described at the end of

section 3.

1. Blocks sent downline by each application program
but not yet delivered to the other application
are discarded.

2. Blocks sent upline to each application program
but not yet delivered from the other application
program are discarded.

An asynchronous break supervisory message
(figure 3-28) is sent to the other application
program.

Each application program resets its flow con-

trol algorithm, as described previously under
Monitoring Downline Data.

The other (receiving) application program issues
an asynchronous reset supervisory message, as

shown in figure 3-29. Until the reset message
is sent, no upline or downline data can be

exchanged on the connection. NAM sends no

response to either reset message.

6. Normal downline and upline traffic can now
resume. The first block sent or received on
the connection that is not a null block marks
the point in traffic where data flow was inter-
rupted .

Bypassing Downline Data on an

Application-to-Application Connection

Your program can bypass all downline data queued

between itself and another application by sending
the asynchronous application-interrupt supervisory
message shown in figure 3-37, using any parm field

value. NAM does not send a response for this
message to your program.

The second set of steps shown in figure 3-38 then
occurs:

1. The network does not discard any blocks queued

for delivery to the other application program.

Upline blocks from the other program queued for

delivery to your application program are not
affected. Neither program's flow control
algorithm is affected.

2. The network sends the other application program
an asynchronous user-interrupt supervisory
message (figure 3-31), containing a reason code
equal to the parm value your program sent in

its application-interrupt message.

3. The other application program sends the network
an asynchronous interrupt-response supervisory
message (figure 3-33). If the other program
recognizes the reason code as indicating the

need to discard your program's downline (the

other program's upline) data blocks, it will
begin to do so.

60499500 R 3-35

ta

59 51 49 43 35 23

intr app parol acn

I

I

ta

intr

app

parm

acn

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 80i o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the vaLue of the reserved symbol INTR.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol APP.

Application-interrupt 8-bit value. Can be one of the following:

Valid on application-to-application connections only; no predefined meaning.
and
1

3

thru
255

On device-to-application connections, discard all blocks received until a
TO/MARK/R synchronous supervisory message is received. On
application-to-application connections, no predefined meaning.

Valid on application-to-application connections only; no predefined meaning.

You can access this field with the reserved symbol INTRCHR, as described in section 4.

Application connection number assigned by the network software for the connection on which
the application interrupt is requested. You can access this field with the reserved symbol
INTRACN, as described in section 4.

Figure 3-35. Application-Interrupt <INTR/APP/R) Supervisory Message Format

I

I

ta

intr

rsp

ta

59 51 49 43 35 23

intr rsp acn unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent or into which it is received.

Primary function code 80i o . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol RSP.

Application connection number assigned by the network software for the connection on which
the user-interrupt-response supervisory message was sent. The value placed in this field
must be the device connection value used in the INTR/USR/R message to which this message is a
response. You can access this field with the reserved symbol INTRACN, as described in

section 4.

Figure 3-36. Application-Interrupt-Response (INTR/RSP/R) Supervisory Message Format

3-36 60499500 R

ta

to

mark

ta

ta

59 51 49 43

to ark unused

59 55 47 43 41 35

to nark unused

act=2

act=3

Symbolic address of the application program's text area from which this synchronous super-
visory message is sent.

Primary function code C.4^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol TO.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol NARK.

Figure 3-37. Terminate-Output-Harker (TO/NARK/R) Supervisory Message Format

Application NAN

—
Nessage

INTR/APP/R

Connection

Zero

The network acknowledges and discards all blocks queued for delivery to the device.
Your application program can request queued input from NAM but cannot send another
INTR/APP/R affecting this connection.

TO/MARK/R

INTR/RSP/R

Nonzero

Zero

Your application program can now resume output to the device. NAM stops discarding
downline blocks.

Application 1 NAM Application 2 Message Connection

INTR/APP/R Zero

INTR/USR/R Zero

The other application program discards all blocks delivered to it, if that is an
appropriate action for an interrupt.

marker Nonzero

Your application program can now resume normal output. The other program stops
discarding your downline blocks.

INTR/RSP/U Zero

INTR/RSP/R Zero

Figure 3-38. Downline Data Flow Control Supervisory Message Sequences

60499500 R 3-37'

If your program does not use the application-
Interrupt message as a method of discarding data,
the following step does not apply:

4. Both programs now must recognize some marker in
your program's downline data to indicate the
point in the process where the other program
should stop discarding blocks. The synchronous
terminate-output-marker supervisory message, as
described in figure 3-36, can be used. NAM
sends no response to this message and does not
interpret it.

5. The other application program issues an
interrupt-response asynchronous supervisory
message (figure 3-33).

6. The network sends your application program an
asynchronous interrupt-response supervisory
message (figure 3-33). Until this message is
received, your program cannot send another
application-interrupt message affecting the
same connection.

7. Your program can now resume normal downline
traffic.

TERMINAL USE OF USER INTERRUPTS
FOR PRIORITY DATA

The terminal operator can send a message to the
application that bypasses regular upline data by
entering a user-interrupt priority data sequence.
The operator enters the sequence by entering the
TIP command control character (defined by the CT
command) and an alphabetic character. NAM generates
the user-interrupt-request supervisory message,
INTR/OSR/R (illustrated in figure 3-39) and sends
it to the application.

The application program responds with the
application-interrupt-response supervisory message
(illustrated in figure 3-36) after receiving the
INTR/USR/R message if the application supports user
interrupts. If the application does not support
priority data user interrupts, it can ignore the
INTR/OSR/R message and issues no response. Figure
3-40 illustrates the flow of messages. Until the
response is sent, the user cannot enter another
interrupt sequence.

Application NAN Message

INTR/USR/R

NAM delivers the user- interrupt ASCII char-
acter to the application in an asynchronous
supervisory message on acn=0.

Supervisory programs and applications that do
not support the user-interrupt-request message
need take no further action.

INTR/RSP/R

The application that supports user interrupt
requests must respond with an interrupt-
response supervisory message on acn=0.

Figure 3-40. User Interrupt for Priority
Data Supervisory Message Sequence

If the application program supports priority data
user interrupts, predefined meanings can be given
to the ASCII characters available as interrupt
characters. Only the characters A through Z and a
through z can be used.

ta

ta

intr

char

59 51 49 43 35

intr char

23

acn unused

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 801o. You can access this field with the reserved symbol PFC, as
described in section 4. The value of this field is defined as the value of reserved symbol
INTR.

Secondary function code 00. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol USR.

User-interrupt character. This 8-bit field contains one of the 7-bit ASCII codes for Letters
shown in table A-2. You can access this field with the reserved symbol INTRCHR, as described
in section 4.

Application connection number assigned by the network software for the connection sending the
user-interrupt request. You can access this field with the reserved symbol INTRACN, as
described in section 4.

Figure 3-39. User-Interrupt-Request (INTR/USR/R) Supervisory Message Format for Priority Data

3-38
60499500 R

CONTROLLING UPLINE BLOCK
CONTENT

Several asynchronous supervisory messages allow you
to control the content of upline blocks. (Downline
block content Is controlled directly by your program
and indirectly by the values your program places in
the accompanying application block header.) Using
supervisory messages, your program can:

Convert character codes in unreceived upline
network data blocks to 6-bit display code or
cancel such conversion

Change character byte packing in unreceived
upline network data blocks

Change byte packing in unreceived synchronous
supervisory message blocks

Discard unreceived transparent mode data from a
device or cancel that discarding operation

Truncate unreceived upline blocks

The following subsections describe these supervisory
messages

.

CONVERTING AND REPACKING DATA

Data exchanged on an interactive device-to-
application connection is converted to and from
display code or ASCII character codes at the
discretion of the application program. This
conversion also includes packing and unpacking of
data character codes from bytes of different sizes.
NAM converts data in a given block according to the
application character type associated with the
block.

Data sent downline by an application program for
| output at an interactive device or to another

application has an application character type
associated with it on a block-by-block basis. When
the application program needs to change the conver-
sion performed for downline data on a given con-
nection, it simply changes the act field value used
in the block header of each data block. The effects
of a given act field value declaration are described
in detail in section 2.

| Upline data from a console device or another appli-
cation has an application character type associated
with the logical connection On which the data blocks
are received. The application character type

| associated with the connection is assigned by the
application program when the logical connection is
first established. This assignment is part of the
connection-accepted supervisory message.

When the application program needs to change the
conversion performed for upline data on a given
connection, it changes the act field value
associated with the logical connection by issuing
the asynchronous change-input-character-type super-
visory message. This message can be issued at any
time the logical connection exists, after the
application program has issued the FC/INIT/N mes-
sage for the connection. As shown in figure 3-41,
there is no response to the change-input-
character-type message, but the message takes
effect immediately.

Application NAM Message

DC/CICT/R

logical con-
of the new

The next input
nection returns
character type.

request

blocks
for this
in bytes

Figure 3-41. Change-Input-Character-
Type Supervisory Message Sequence

The change-input-character-type message has the
format shown in figure 3-42. The act field values
described in the figure are explained in more
detail in section 2. Note that transparent mode
upline data cannot be correctly received when an
application character type other than 2 or 3 is
associated with the logical connection.

The conversion change requested by the change-input-
character-type message affects the next block
fetched by the application program. For example,
the application program might have been receiving
blocks of 7-bit ASCII code characters, packed in
12-bit bytes (an act value of 3); the application
program now needs to receive blocks of 6-bit display
code characters, packed in 6-bit bytes (an act value
of 4). The program sends a change-input-character-
type message, specifying an act value of 4; the
next block received from that logical connection is
6-bit display code characters, packed in 6-bit
bytes.

If the requested application character type is not
valid for the connection specified, a logical-error
supervisory message is sent to the application pro-
gram, and the application character type associated
with the logical connection is unchanged. Other-
wise, receipt of the change-input-character-type
message is not acknowledged.

60499500 R 3-39

ta

dc

cict

acn

nxp

set

ta

59 51 49 43 55 23 7 5

n s

dc cict unused acn unused X

P

c

t

act

Symbolic address of the application program's text area from which this asynchronous super-
visory nessage is sent.

Primary function code C2i 6. You can access this field with the reserved syabol PFC, as
described in section 4. Its value is defined as the value of the reserved syabol DC.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CICT.

Application connection number assigned by the network software to this end of the logical con-
nection when it was established. The value placed in this field must be the value associated
with an existing connection and used in the FC/INIT/N supervisory message that completed
initialization of the connection. You can access this field with the reserved symbol DCACN,
as described in section 4.

No-transparent- input flag. This field can have the values:

Deliver network data blocks with the xpt bit set in the associated block header

1 Do not deliver network data blocks with the xpt bit set in the associated block
header

You can access this field with the reserved symbol DCNXP, as described in section 4.

Application character type in which the application program expects to receive synchronous
supervisory messages. This field can have the values:

Deliver supervisory messages in application character type 2

1 Deliver supervisory messages in application character type 3

You can access this field with the reserved symbol DCSCT, as described in section 4.

Figure 3-42. Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 1 of 2)

3-40 60499500 R

act Application character type, specifying the form of character byte packing that the
application program requires for all future input data blocks from the logical connection.
The value declared replaces the value previously declared by the application program for this
connection in a CON/REQ/N or DC/CICT/R message. This field can have the values:

or
1

2

Reserved for CDC use.

8-bit characters in 8-bit bytes, packed 7.5 characters per central memory word;
if the input is not transparent mode, the ASCII character set described in table
A-2 is used.

3 8-bit characters in 12-bit bytes, packed 5 characters per central memory word,
right-justified with zero fill within each byte; if the input is not transparent
mode, the ASCII character set described in table A-2 is used.

4 6-bit display code characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in

table A-1. This applies to terminal-to-application connections only.

5

thru
11

Reserved for CDC use.

12
thru
15

Reserved for installation use.

The act value declared applies only to input on the connection and can be changed by another
DC/CICT/R message at any time during the existence of this logical connection. You can
access this field with the reserved symbol CONACT, as described in section 4.

Figure 3-42. Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 2 of 2)

REPACKING SYNCHRONOUS SUPERVISORY
MESSAGE BLOCKS

Synchronous supervisory message block fields are
packed in either 8-bit or 12-bit bytes, at the
discretion of the application program. NAM packs
or unpacks fields in a given synchronous supervisory
message block according to the application character
type associated with the block (downline) or with
the connection (upline).

Synchronous supervisory messages sent downline by
an application program have an application character
type associated with them on a block-by-block basis.
When the application program needs to change the
packing performed for blocks on a given connection,
it simply changes the act field value used in the
block header of each synchronous supervisory mes-
sage. The effects of a given act field value
declaration are described in detail in section 2.

An upline synchronous supervisory message block has
an application character type associated with the
connection on which the block is received. The
application character type associated with the
connection is assigned by the application program
as the set field value when the connection is first'
established. This assignment is part of the
connection-accepted supervisory message and is

separate from the assignment made for data blocks
received on the connection.

When the application program needs to change the
packing performed for upline synchronous supervisory
messages on a given connection, it changes the set

field value associated with the connection by
issuing the asynchronous change-input-character-type
supervisory message. This message can be issued at

any time the logical connection exists, after the
application program has issued the FC/INIT/N message
for the connection. As shown in figure 3-41, there
is no response to the change-input-character-type
supervisory message, but the message takes effect
immediately.

The change-input-character-type message has the
format shown in figure 3-42. The application
character types selected with the set field values
are described in more detail in section 2.

The repacking change requested by the change-input-
character-type message affects the next block
fetched by the application program. For example,

the application program might have been receiving
synchronous supervisory messages with fields packed
in 12-bit bytes (using an application character
type of 3); the application program now needs to
receive synchronous supervisory message blocks with
fields stored in 8-bit bytes (using an application
character type of 2). The program sends a change-
input-character-type message, specifying an set
field value of 0; the next synchronous supervisory
message block received on that logical connection
is packed in 8-bit bytes.

60499500 R 3-41 •

EXCHANGING TRANSPARENT DATA WITH
DEVICES

Transparent data is exchanged with a terminal device
at the discretion of the application program. NAM
transfers transparent data blocks according to the

transparent data flag associated with the block.

Network data blocks sent downline by an application
program have a transparent data flag associated
with them on a block-by-block basis. When the
application program needs to change from or to
transparent mode output on a given connection, it

simply changes the xpt field value used in the
application block header of each downline data
block. The effects of a given xpt field value are
described in detail in section 2.

Upline network data blocks also have a transparent
data flag associated with them on a block-by-block
basis. Each connection has a no-transparent-data
flag associated with that connection. This flag
indicates whether the application wants to receive
transparent data or wants NAM to discard such data.
The no transparent-data flag setting associated
with the connection is assigned by the application
program as the nxp field value when the connection
is first established. This assignment is part of
the connection-accepted supervisory message.

When the application program needs to change the
value of the no-transparent-data flag for a given
connection, it issues the change-input-character-
type synchronous supervisory message. This message
can be issued at any time the logical connection
exists, after the application program has issued
the FC/INIT/N message for the connection. As shown
in figure 3-41, there is no response to the change-
input-character-type message, but the message takes
effect immediately.

The change-input-character-type message has the
format shown in figure 3-42. The effects of the
nxp field values used in the message are described
in section 2, where the application block header
fields are described.

The transparent data exchange change requested by
the change-input-character-type message affects the
next upline block and all subsequent blocks queued
for the application program. For example, the
application program might have been receiving
transparent blocks for an interactive console when
the program contains no code to process those
blocks; it needs to prevent receipt of any more
transparent blocks while that connection exists.
The program sends a change-input-character-type
message, specifying an nxp field value of 1; the
next (and any subsequent) block from that terminal
device is discarded if it is in transparent mode,
even if that block completes the current message.

The setting of the no-transparent-input flag does
not cause data blocks on application-to-application
connections to be discarded, unless the sending
application program sets the xpt field value of the
associated block header to 1.

TRUNCATING UPLINE BLOCKS

Blocks received upline by an application program
from a terminal or from another application can be
truncated to fit the text area buffer provided by
your application. This truncation allows the
application to obtain at least part of a block
longer than the text area instead of receiving an
input-block-undeliverable reply (ibu bit set in the
block header). An asynchronous supervisory message
can be used to inform NAM that the application
wants to have a block truncated on a particular
connection or to have blocks truncated on all
existing and future connections. As indicated in
figure 3-43, the effect of this supervisory message
cannot be reversed, and there is no response.

Application NAM Message

DC/TRU/R

this
is

is

truncated

The next upline block delivered for
logical connection or all connectior

(depending on whether a nonzero acn

specified in the DC/TRU/R) will be 1

if necessary.

Figure 3-43. Block Truncation
Supervisory Message Sequence

When a block is truncated, the tru bit in the
application block header is set, and the tic field
in the block header is set to the size of the
portion of the block received (instead of being set
to the full size of the block)

.

This block truncation supervisory message (figure
3-44) can be issued at any time after completion of
a NETON call. This message affects all messages on
the connection, including synchronous supervisory
messages. If acn=0 is specified, the application
has to call NETOFF and NETON again to not receive
truncated data blocks.

If the acn field specified within the message
identifies a nonexistent logical connection, a
logical-error supervisory message is sent to the
application and data truncation does not occur. If

more than one data truncation message affecting a
connection is issued, the extra messages are
ignored

.

3-42 60499500 R

ta

ta

dc

tru

59 51 49 43 55 23

dc tru unused acn unused

Application program text area from which this asynchronous supervisory message is sent.

Pr
desc

imary function code C2-|i. You can access this field with the reserved symbol PFC, as
scribed in section 4. Its value i<is defined as the value of the reserved symbol DC.

Secondary function code 01-| o . You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TRU.

Application connection number. If zero, all existing and future connections other than con-
nection zero will have truncation control on. If acn is not zero, truncation control will be
on for that connection only. You can access this field with the reserved symbol DCACN, as

described in section 4.

Figure 3-44. Block Truncation (DC/TRU/R) Supervisory Message Format

MANAGING DEVICE
CHARACTERISTICS

Devices serviced as interactive virtual terminals
have many characteristics that can affect the way
in which they send or output data. The network
software can use varying numbers of these charac-
teristics, depending on the terminal class of the
device and sometimes on the protocol used by the
device.

The following characteristics can be known and used
through the network software when servicing an
asynchronous device in terminal classes 1 through
8, or any device in terminal classes 28 through 31:

Character used to discard a block of output

Whether the break key should be interpreted as
a cancel input and user break 1 command (does
not apply to terminal class 4)

Backspace character used to edit a line of data

Characters used as user break 1 and user break
2 commands

Number of idle characters needed after a car-
riage return or a line feed

Character used to cancel an input line

Cursor positioning needed at the end of a
physcial line or block (does not apply to
terminal class 4)

Network control character used

Delimiters of single-message transparent input
(does not apply to terminal class 4)

Delimiters of multiple-message transparent input
(does not apply to terminal class 4)

Character used at the end of a logical input
line or of an input block (does not apply to
terminal class 4)

Echoplex mode (does not apply to terminal class
4)

Whether full-ASCII or special editing mode is

in use

Whether the host availability display appears
in full form

Whether the device supports input or output flow
control characters (does not apply to terminal
class 4)

Whether the device is using paper tape, a key-
board, block mode, or transparent mode during
input (does not apply to terminal class 4)

Whether the device is using a display, a

printer, or paper tape during output (paper
tape does not apply to terminal class 4)

The parity processing required during input and
output (does not apply to terminal class 4)

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

Whether the communication line is serviced in
full-duplex mode (does not apply to terminal
class 4)

What the upline blocking factor is

What the transmission block size is

60499500 R 3-43

The following characteristics can be known and used
through the network software when servicing an X.25
device In terminal classes 1 through 3 or 5 through
8:

Whether the break key should be Interpreted as
a user break 1 command

Backspace character used to edit a line of data

Characters used as user break 1 and user break
2 commands

Number of Idle characters needed after a car-
riage return or a line feed

Character used to cancel an input line

Cursor positioning needed at the end of a
physical line or block

Network control character used

Delimiters of single-message transparent input

Delimiters of multiple-message transparent input

Character used at the end of a logical Input
line or of an input block

Whether full-ASCII mode is in use

Whether the host availability display appears
in full form

whether the device Is using a display, a
printer, or paper tape during output

The parity processing required during output

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

Whether the communication line is serviced in
full-duplex mode (does not apply to terminal
class 4)

What the upline blocking factor is

What the transmission block size is

The following characteristics can be known and used
through the network software when servicing a CDC
mode 4 device in terminal classes 10 through 13 or
15:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line

Network control character used

Delimiters of single-message transparent input

Delimiters of multiple-message transparent input

Character used at the end of a logical input
line or of an input block

Whether full-ASCII editing mode is in use

Whether the host availability display appears
in full form

Whether the device is using block mode or
transparent mode during input

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

The following characteristics can be known and used
through the network software when servicing a HASP
device in terminal classes 9 or 14:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line

Network control character used

Character used at the end of a logical input
line

Whether the host availability display appears
in full form

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

The following characteristics can be known and used
by the network software when servicing a 2780 or
3780 device in terminal classes 16 or 17:

Network control character used

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

• 3-44 60499500 R

The following characteristics can be known and used

through the network software when servicing a 3270

device in terminal class 18:

Characters used as user break 1 and user break

2 commands

Character used to cancel an input line

Network control character used

Character used at the end of a logical input

line

Whether the host availability display appears

in full form

What the page width and page length are

Whether page waiting occurs

Whether unsolicited messages from the network

operator can be delivered

What the terminal class is

What the upline blocking factor is

What the terminal transmission block size is

60499500 S 3-44.1/3-44.2 •

Your application program can determine these
characteristics or change them by using the super-

visory messages described in the next subsections.

Information on the use of these characteristics
appears in the NAM 1/CCP 3 Terminal Interfaces

reference manual listed in the preface.

CHANGING DEVICE
CHARACTERISTICS
The process of configuring a terminal consists of

defining a number of device characteristics that
the network software should use in communication
with a terminal. Some device characteristics can
be given default values by the Communications
Control Program (COP), while others can be provided
by the Network Definition Language (NDL) and the

site administrator.

Once a device is configured (or defined) , sub-
sequent changes to the device definition can be
made via terminal definition commands from the

terminal operator, or via supervisory messages from

the application program to which the device is
connected.

This subsection describes the supervisory messages
that the application can use to change the settings
of device characteristics. The supervisory message
used to find out the current values of device
characteristics is described in the following sub-

section, Requesting Device Characteristics. Ter-
minal definition commands are described in the NAM
1/CCP 3 Terminal Interfaces reference manual listed

in the preface.

Figure 3-45 shows the most probable message
sequences involved in changing terminal character-
istics.

The application program is advised of the terminal
definition command entry explicitly only when the
command changes one of three device characteristics:

Terminal class (value describing the physical
attributes of a group of similar terminals)

Page width (value describing the number of

characters in each physical line of output)

Page length (value describing the number of

physical lines output per page)

The upline terminal-characteristics-redefined
supervisory message is an asynchronous one, with

the format shown in figure 3-46. This message is

sent to the application by NAM whenever NAM is

notified that one of the three device character-

istics has been redefined by a terminal user or by
the application program. The effect of the ter-

minal definition command causing this message is

immediate, and no response is required from the
application program.

Application NAM Message

The terminal operator enters the TC, PW, or PL commands to the Terminal Interface

Program.

TCH/TCHAR/R

The next block sent to the device or from the device is affected by any constraints

imposed under the new device page width, page length, or terminal class.

Application NAM TIP Message

The application program changes a device characteristic other than page width, page

length, or terminal class.

CTRL/OEF/R

The next block sent to the device or sent from the device is affected by any constraints

imposed under the new device characteristic.

Application NAM TIP Message

The application program changes page width, page length, or terminal class.

CTRL/DEF/R

-<« TCH/TCHAR/R

The next block sent to the device or sent from the device is affected by any constraints

imposed under the new page width, page length, or terminal class.

Figure 3-45. Terminal Characteristics Redefinition Supervisory Message Sequences (Sheet 1 of 2)

60499500 R 3-45

Application NAM Nessage

The application sends a define-nultiple-terminal-characteri sties message to
to redefine several of the terminal characteristics with a single message,
is properly formatted and the new characteristics take effect immediately,
with a define-terminal-characteristics normal response.

NAM
The
NAM

in order
message
replies

CTRL/CHAR/R

< CTRL/CHAR/N

Application NAN Message

The application sends a define-terminal-characteristics message to NAM, but
FN/FV pairs is bad. The changes do not take effect, and a define-terminal-
characteristics abnormal response is sent to the application.

one of the

CTRL/CHAR/R

-< CTRL/CHAR/A

Figure 3-45. Terminal Characteristics Redefinition Supervisory Message Sequences (Sheet 2 of 2)

ta

ta

tch

tchar

telass

59 51 49 43 35 23 15

tch tchar unused acn telass pw Pi

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 64i . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCH.

Secondary function code 0. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol TCHAR.

Application connection number assigned by the network software to this end of the logical con-
nection for which the change occurred. This field always contains a value previously used by
the application program in an FC/INIT/N message. You can access this field with the reserved
symbol CONACN, as described in section 4.

The terminal class currently associated with the real device by the TIP servicing it. The
terminal class determines the parameters and ranges valid for redefinition of the device. The
device is serviced by the TIP according to the attributes associated with the terminal class
(see text). The telass field can contain the values:

Reserved for COC use.

Archetype terminal for the class

Archetype terminal for the class

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

Archetype terminal for the class i

teletypewriter.

s a Teletype Corporation Model 30 Series.

s a CDC 713-10, 751-1, 752, 756.

S a CDC 721.

s an IBM 2741.

s a Teletype Corporation Model 40-2.

s a Hazeltine 2000, operating as a

Archetype terminal for the class is a VT100 (ANSI X3.64)

Figure 3-46. Terminal-Characteristics-Redefined (TCH/TCHAR/R) Supervisory
Nessage Format (Sheet 1 of 2)

3-46 60499500 R

pw

pi

8

9

10

11

12

13

14

15

16

17

18

19

thru
27

28
thru
31

Archetype terminal for the class is a Tektronix 4000 Series, operating as a

teletypewriter.

Archetype terminal for the class is a HASP (post-print) protocol multi leaving

workstation.

Archetype terminal for the class is a CDC 200 User Terminal.

Archetype terminal for the class is a CDC 714-30.

Archetype terminal for the class is a CDC 711-10.

Archetype terminal for the class is a CDC 714-10/20.

Archetype terminal for the class is a HASP (pre-print) protocol multi leaving work-
station.

Archetype terminal for the class is a CDC 734.

Archetype terminal for the class is an IBM 2780.

Archetype terminal for the class is an IBM 3780.

Archetype terminal for the class is an IBM 3270.

Reserved for CDC use.

Site-defined terminal class.

If the terminal class value received has not changed from that previously associated with the
device, then the value in either the pw or pi fields (or both) has usually changed. If the
terminal class value received has changed from that previously associated with the device,
then all attributes associated with the device have been changed to the default attributes for
the new terminal class; the values in the pw and pi fields might have changed from those
previously associated with the real device. You can access this field with the reserved
symbol TCHTCL, as described in section 4.

The most recently declared page width of the console device, specifying the number of
characters in a physical line of output. This field can contain the values or 20 £ pw <
255. You can access this field with the reserved symbol TCHPW, as described in section 4.

The most recently declared page length of the console device, specifying the number of
physical lines that constitute a page. This field can contain the values or 8 < pi < 255.
You can access this field with the reserved symboL TCHPL, as described in section 4.

Figure 3-46. Terminal-Characteristics-Redefined (TCH/TCHAR/R) Supervisory
Message Format (Sheet 2 of 2)

There are two different formats for changing
terminal characteristics. Regardless of the format
used, terminal class should only be changed before
other changes are made. A change in terminal class
resets many other characteristics.

The define-terminal-characteristics supervisory
message (figure 3-47) specifies terminal charac-
teristic commands as a string of ASCII characters

.

If there is an error in one of the commands , the
TIP stops processing the message, no indication is
sent to the application, and any commands prior to
the error are processed. There is no response to
this message.

The define-multiple-terminal-characteristics message
is described in figure 3-48. This message specifies
a string of pairs of 8-bit numbers starting after
the secondary function code field and extending for
as many 8-bit bytes as necessary. The application
stores an 8-bit field number (FN) in the first of a
pair of bytes and a field value (FV) in the second
byte of the pair. Each FN represents a particular
device characteristic corresponding to a terminal
definition command or command parameter, and the
corresponding FV represents the value the applica-
tion program wishes to assign to that character-
istic. The application program needs to specify
only the FN/FV pairs for the characteristic it wants

60499500 S 3-47

ta

ta + 7

ta

ta + 21

ta

Ctrl

def

char-j

59 51 19 43 35 27 19 11 3

ctrt def charl char2 char3 char4 char5 char6

s a

char111 char112 unused

59 55 47 43 41 35 31 23 19 11 7

ctrt def charl char2 char3

w ££

char109 char110 char111 char112 unused

act=2

act=3

Symbolic address of the application program's text area from which this synchronous
supervisory message is sent.

Primary function code C1i . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the reserved symbol CTRL.

Secondary function code 4. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol DEFF.

Up to 112 7-bit ASCII characters of one or more commands consisting of the network control
character, characteristic mnemonic, and its desired setting. The characteristic and its

value are separated by an equals sign. Multiple characteristics can be changed by separating
the commands with the network control character. See the Terminal Interfaces reference
manual for the possible commands that can be sent.

Figure 3-47. Def ine-Terminal-Characteri sties (CTRL/DEF/R) Supervisory Message Format

to change. If one of the FN/FV pairs contains an
incorrect value, no characteristics are changed and
the application program receives the abnormal
response message shown in figure 3-49. Figure 3-50
shows the normal response to the define-multiple-
terminal-characteristics supervisory message.

Valid combinations of FN/FV pairs are defined in
table 3-2. Field numbers are listed in hexadecimal,

with octal equivalents in parentheses,
are listed only in hexadecimal.

Field values

The define-terminal-characteristics and define-
multiple-terminal characteristics supervisory mes-
sages sent downline by the application program are
removed from the output stream by the TIP and acted
on directly. The terminal operator is not advised
of their occurrence in the output stream.

3-48 60499500 R

ta

ta + 7

ta

ctrL

char

fVi

59 51 W 43 35 27 19 11 3

ctrL char fn-j tv. fri2 fv2 fv3 tv4

s a

fn56 fv56 unused

act=2

ta

ta + 21

59 55 47 43 it1 35 31 23 19 11 ?

Ctrl char fn-| fv-| fn2

s s

*55 fv55 fn56 fv56 unused

act=3

Symbolic address of the application program text area from which this synchronous supervisory
message is sent.

Primary function code C1-|^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.

The 8-bit field number of the parameter to be changed.

The 8-bit field value for the parameter.

Up to 56 field number and field value pairs can be specified in a single message. Valid
field numbers and values are defined in table 3-2.

I

I

Figure 3-48. Define-Hultiple-Terminal-Characteristics (CTRL/CHAR/R) Supervisory Message Format

60499500 R 3-49

ta

Ctrl

char

fn

re

ta

ta

59 51 49 43 35 27

Ctrl 1 char fn re unused

59 55 47 43 41 35 31 23 19 11

Ctrl 1 char fn re unused

act=3

act=3

Symbolic address of the application program text area receiving this synchronous supervisory

Message.

Primary function code Clfg. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 8. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol CHAR.

Field number causing the abnormal response.

Reason code for error. This field can have the values:

Reserved for CDC use.

1 Out of range value for command or parameter

2 Duplicate character definition

3 Invalid command or parameter value for terminal class to which device belongs

4 Illegal terminal class change

5 Illegal command or parameter for terminal class to which device belongs

6 thru Reserved for CDC use
255

Figure 3-49. Define-Multiple-Terminal-Characteri sties Abnormal Response
(CTRL/CHAR/ A) Supervisory Message Format

ta

Ctrl

char

ta

ta

59 51 49 43

ctrl 1 char unused

59 55 47 43 41 35

Ctrl 1 char unused

act=2

act=3

Symbolic address of the application program's text area receiving this synchronous
supervisory message.

Primary function code C1-| . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.

Figure 3-50. Multiple-Terminal-Characteristics-Defined (CTRL/CHAR/N) Supervisory Message Format

3-50 60499500 R

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES

Command (Mnemonic)
Field
Number
(Octal)

Usable for
Terminal
Classes (l)

Field
Value
Range

Field Value Content Meaning

Abort block (AB) 29 (51) 1 thru 8, (2)
28 thru 31

(9 thru 18)

thru 7E © Numerical value for character

Blocking factor (BF) 31 (61) 1 thru 8, 10 thru
13, 15, 18 ®
(9, 14, 16,

17)

thru 20 Multiple of 100 characters
that constitute an upline
block

Break as user break 1

(BR)

33 (63) 1 thru 3,

5 thru 8,

28 thru 31

(4, 9 thru 18)

or 1 Yes (1), no (0)

Backspace character
(BS)

27 (47) 1 thru 8,
28 thru 31

(9 thru 18)

thru 7E (?) Numerical value for character

User break 1 character
(Bl)

2A (52) 1 thru 15, 18,

28 thru 31

•(16, 17)

thru 7E (|) Numerical value for character

User-break-2 character
(B2)

2B (53) 1 thru 15, 18,
28 thru 31

<16, 17)

thru 7E (D Numerical value for character

Carriage return idle

count (CI)

2C (54) 1 thru 8,

28 thru 31

(9 thru 18)

thru 63 Number to insert

2E (56) 1 thru 8,

28 thru 31

(9 thru 18)

1 TIP should calculate number

Cancel character (CN) 26 (46) 1 thru 15, 18,

28 thru 31

(16, 17)

thru 7E (?) Numerical value for character

Cursor positioning
(CP)

47 (107) 1 thru 3,

5 thru 8,

28 thru 31

(4, 9 thru 18)

or 1 Yes (1), no (0)

Network control
character (CT)

28 (50) 1 thru 18,

28 thru 31

thru 7E (D Numerical value for character

Single message @
transparent input
delimiters (DL)

38 (70) 1 thru 8,
28 thru 31

(9 thru 18)

or 1 Character specified (1), not
specified (0)

Message and mode
delimiter

39 (71) 1 thru 3,

5 thru 8,

28 thru 31

(9 thru 18)

thru OF Character count (upper byte)

Message and mode
delimiter

3A (72) 1 thru 3,

5 thru 8,
28 thru 31

(9 thru 18)

thru FF Character count (lower byte)

Message and mode
delimiter

3B (73) 1 thru 8, 10

thru 13, 15, 18,
28 thru 31

(9, 14, 16, 17)

thru FF (5) Numerical value for character

60499500 S 3-51 •

TABLE 3-2. VALID FIELD NUMBERS AMD FIELD VALUES (Contd)

Command (Mnemonic)
Field
Number
(Octal)

Usable for
Terminal
Classes (T)

Field
Value
Range

Field Value Content Meaning

Message and mode
delimiter

Mode type

End-of-block character
(EB)

Use default
terminator

End-of-block cursor
positioning response

End-of-line character
(EL)

Use default
terminator

End-of-line cursor
positioning response

Echoplex mode (EF)

Full ASCII input (FA)

See host availability
display (HD)

Input control (IC)

Input device (IN)

3C (74)

46 (106)

40 (100)

41 (101)

42 (102)

3D (75)

3E (76)

3F (77)

31 (61)

37 (67)

21 (41)

43 (103)

34 (64)

35 (65)

1 thru 3, 5 thru
8, 28 thru 31

(9 thru 18)

1 thru 8, 10
thru 13, 15, 18,

28 thru 31

1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru
31

1 thru 3, 5 thru
8, 10 thru 13,

15, 18, 28 thru
31

1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru
31 (9, 14, 16,
17, 18)

1 thru 3, 5 thru
8, 10 thru 13,
15, 18, 28 thru 31

1 thru 3, 5 thru
8, 10 thru 13,

15, 18, 28 thru
31

1 thru 3, 5 thru
8, 10 thru 13
15, 28 thru 31

(9, 14, 16, 17,

18)

1 thru 3,

5 thru 8,
28 thru 31 (3)

(4, 9 thru 18)

1 thru 8, 10

thru 13, 15,

16, 17, 18,
28 thru 31

1 thru 18,

28 thru 31

1 thru 3,

5 thru 8,

28 thru 31 (3)
(4, 9 thru 18)

1 thru 8, 10

thru 13, 15,
28 thru 31

1 thru 8,

28 thru 31 (f)

or 1

thru FF ©

1 or 2 (J)

thru 3 (5)

thru 7F Q)

1 or 2

thru 3 (5)

or 1

or 1

or 1

or 1

or 1

thru 2 (?)

Timeout (1), no timeout (0)

Single message (0)

Numerical value for character

End-of-line (1), end-of-block
(2)

No (0), CR (1), LF (2), CR
and LF (3)

Numerical value for character

End-of-line (1), end-of-block
(2)

No (0), CR (1), LF (2), CR
and LF (3)

Yes (1), no (0)

Yes (1), no (0)

Yes (1), no (0)

Yes (1), no (0)

Transparent input (1) , not
transparent (0)

Keyboard (0), paper tape (1),
block mode (2)

3-52 60499500 S

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)
Field
Number

(Octal)

Usable for
Terminal
Classes (T)

Field
Value
Range

Field Value Content Meaning

Line feed idle count
(LI)

2D (55) 1 thru 8,

28 thru 31

(9 thru 18)

thru 63 Number to insert

2F (57) 1 thru 8,

28 thru 31

(9 thru 18)

1 TIP should calculate number

Lockout unsolicited
messages (LK)

20 (40) 1 thru 15, 18,

28 thru 31

(16)

or 1 Yes (1), no (0)

Output control (OC) 44 (104) 1 thru 3,

5 thru 8,
28 thru 31 @
(4, 9 thru 18)

or 1 Yes (1), no (0)

Output device (OP) 36 (66) 1 thru 8,

28 thru 31

(9 thru 18)

thru 2 (5) Display (0), printer (1),

paper tape (2)

Parity processing (PA) 32 (62) 1 thru 3, 5 thru
8, 28 thru 31

thru 4 Zero (0), odd (1), even (2),
none (3) , ignore (4)

Page waiting (PG) 25 (45) 1 thru 8, 10

thru 13, 15, 18,
28 thru 31

(9, 14, 16, 17)

or 1 Yes (1), no (0)

Page length (PL) 24 (44) 1 thru 18,

28 thru 31

0, 8 thru FF (5) Number of physical lines

Page width (PW) 23 (43) 1 thru 18,

28 thru 31
0, 20 thru FF Number of characters

Site-defined use 90 thru 99

(220 thru
231)

1 thru 18,

28 thru 31

thru FF (J) Site-defined

Special editing mode
(SB)

30 (60) 1 thru 8, ©
28 thru 31

(9 thru 18)

or 1 Yes (1), no (0)

Terminal class (TC) 22 (42) 1 thru 10,

28 thru 31

01 thru OF (5) Number of new class

Multiple-message (4)
transparent
delimiters (XL)

38 (70) 1 thru 8,

28 thru 31

(9 thru 18)

or 1 Character specified (1), not
specified (0)

Message delimiter 39 (71) 1 thru 3, 5 thru
8, 28 thru 31

(9 thru 18)

thru F Character count (upper byte)

Message delimiter 3A (72) 1 thru 3, 5 thru
8, 28 thru 31

(9 thru 18)

thru FF Character count (lower byte)

Message delimiter 3B (73) 1 thru 8, 10

thru 13, 15, 18,

28 thru 31
(9, 14, 16)

thru FF (D Numerical value for character

60499500 S 3-53*

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES (Contd)

Command (Mnemonic)
Field
Number
(Octal)

Usable for
Terminal
Classes (T)

Field
Value
Range

Field Value Content Meaning

Mode delimiter 3C (74) 1 thru 3, 5 thru

8, 28 thru 31

(9 thru 18)

or 1 Timeout (1) , no timeout (0)

Mode delimiter 45 (105) 1 thru 8,

28 thru 31

(9 thru 18)

thru FF (1) Numerical value for character

Mode type 46 (106) 1 thru 8, 10, 13,

15, 28 thru 31

1 Multiple-message (1)

Full duplex (none) 57 (127) 1 thru 3,

5 thru 8,

28 thru 31

(4, 9 thru 18)

or 1 Yes (1), no (0)

Terminal transmission
block size (none)

IE (36) 1 thru 18, ©
28 thru 31

thru 7 Number of characters (upper
byte)

IF (37) 1 thru 18, ©
28 thru 31

thru FF Number of characters (lower
byte)

Upline block limit
(none)

18 (30) 1 thru 18,

28 thru 31
thru IF © Number of blocks NPU should

queue

Notes

:

Q) No error occurs if an FN/FV pair is issued for a terminal class shown in parentheses.

© Ignored for CDC-defined X.25 packet assembly/disassembly (PAD) terminals.

(3) Any hexadecimal value except 00 thru 02, 20, 30 thru 39, 3D, 41 thru 5A, 61 thru 7A, or 7F.

(4) If the value of
for this commanc

one of the fields for this command is changed, the values of all other fields
. must also be specified.

© Not all values are legal for all terminal classes •

(6) Not allowed for CDC-defined X.25 packet assembly/disassembly (PAD) terminals.

REQUESTING DEVICE CHARACTERISTICS

The request-terminal-characteristics supervisory
message (figure 3-51) is issued by an application
program on console or site-defined device connec-
tions to learn the current value of the device
characteristics. The application program specifies
a string of pairs of 8-bit numbers starting after
the secondary function code field and extending for
as many 8-bit bytes as necessary. The application
stores a field number (FN) in the first half (8

bits) of the 8-bit pair and reserves the second
half (8 bits) for a field value (FV). Each FN
represents a particular characteristic. The network
returns the value of the characteristic in the
corresponding FV byte. Any value placed in the FV
byte by the application is ignored and overwritten.
The application program needs to specify only the
FNs for the characteristics it is interested in.
If the string contains an incorrect FN, no device

characteristics are returned and the application
receives the abnormal response message shown in

figure 3-52. For a list of legal FNs and the cor-
responding range of possible FVs , see table 3-2.

The response to a request-terminal-characteristics
supervisory message is a terminal-characteristics
definition message (figure 3-53). This message can
be received only on console or site-defined device
connections. The NPU generates a string of pairs
of 8-bit numbers starting after the secondary func-
tion code field and extending for as many 8-bit
bytes as necessary. The first 8-bits of the 16-bit
pair is one of the field numbers specified in the
request-terminal-characteristics supervisory mes-
sage. The second 8-bits of the 16-bit pair is the
current value of the particular characteristic the
FN represents. For a list of valid FNs and the
associated valid range of FVs, see table 3-2.

3-54 60499500 S

ta

59 51 49 43 35 27 19 11

Ctrl rtc fn^ fv-, fn2 fv2 ...

ta Symbolic address of the application program's text area from which this synchronous super-
visory message is sent.

Ctrl Primary function code Cl-j^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

rtc Secondary function code 9. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RTC.

fn. The hexadecimal field number of the desired parameter. Valid values are defined in table 3-2.

fv.j Space for the hexadecimal field value of the desired parameter; can be 0.

Figure 3-51. Request-Terminal-Characteristics (CTRL/RTC/R) Supervisory Message Format

ta

Ctrl

rtc

fn

ta

59 51 49 43 35 27

Ctrl 1 rtc fn re unused

Symbolic address of the application program's text area receiving this synchronous
supervisory message.

Primary function code Cl^. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

Secondary function code 9. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RTC.

First field number in the string found to be erroneous by the network software. In case of
several bad field numbers, only the first bad one will be diagnosed.

Reason code for error. This field can have the value:

Reserved for CDC use
thru
4

6
thru
255

Illegal field number value

Reserved for CDC use

Figure 3-52. Request-Terminal-Characteristics Abnormal Response <CTRL/RTC/A) Supervisory Message Format

60499500 R 3-55

ta

ta

Ctrl

ted

fni

fv<

59 51 49 43 35 27 19 11

etrl ted f n-j fv, fng fv2 ...

Symbolic address of the application program's text area receiving this synchronous supervisory
message.

Primary function code C1-| 6. You can access this field with the reserved symbol PFC, as
described in section 4. Its vaLue is defined as the value of the reserved symbol CTRL.

Secondary function code 0Aio. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCO.

The hexadecimal fieLd number of the characteristic parameter. Valid values are defined in
table 3-2.

The hexadecimal field value of the characteristic parameter. Valid values are defined in table
3-2.

Figure 3-53. Device-Characteristics-Definition (CTRL/TCD/R) Supervisory Message Format

HOST OPERATOR COMMANDS
The host operator can send commands to an applica-
tion program through the system console K display.
There are seven commands an application program
might receive. Each command is delivered to the
application program as a separate asynchronous
supervisory message, as shown in figure 3-54.

The host operator request-to-activate-debug-code
supervisory message (figure 3-55) is sent from NAM
to the application program when the operator enters
the K-display command:

K.DB=appname

The application should begin using any in-line
debug code you have included. Activating in-line
debug code can change the application program's
abort conditions or error case handling or both.
There is no response to the request-to-activate-
debug-code message.

The host operator request-to-turn-off-debug-code
supervisory message shown in figure 3-56 is sent
from NAM to the application program when the
operator enters the K-display command:

K.DE=appname

The application should turn off any in-line debug
code you have included. There is no response to
the request-to-turn-off-debug-code message.

The host operator request-to-dump-field-length
supervisory message (figure 3-57) is sent from NAM
to the application program when the operator enters
the K-display command:

K.DU=appname

The application should dump its field length. The
application can call NETDMB to dump its field length
onto the AIP dump file ZZZZDMB (see section 6).
There is no response to the request-to-dump-field-
length message.

The host operator request-to-turn-AIP-traffic-
logging-on supervisory message (figure 3-58) is
sent from NAM to the application program when the
operator enters the K-display command:

K.LB=appname

The application program should call NETDBG to turn
AIP logging on and begin logging of network traffic
on the debug log file. (See section 6.) Note that |
the application program must be loaded with NETIOD
for the AIP logging to occur. There is no response
to the request-to-turn-AIP-traffic-logging-on
message.

The host operator request-to-turn-AIP-traffic-
logging-off supervisory message (figure 3-59) is
sent from NAM to the application program when the
operator enters the K-display command

:

K. I£=appname

The application program should call NETDBG to turn
AIP logging off and stop logging network traffic in
its debug log file. (See section 6.) There is no |
response to the request-to-turn-AIP-traffic-logging-
off supervisory message.

The host operator request-to-release-debug-log-file
supervisory message (figure 3-60) is sent from NAM
to the application program when the operator enters
the K-display command:

K.LR=appname

3-56 60499500 S

ta

ta

Application

^
NAM Message

HOP/OB/

R

The program should begin using any debug code it contains.

Application

**

NAM

The program can stop using any debug code it contains.

Application

*<

NAM

Message

HOP/DE/R

Message

HOP/DU/R

The program should dump its field length and any extended central storage.

Application

-<

NAM

The program should begin using its debug log file.

Application

<<

NAM

The program can stop using its debug log file.

Application NAM

^_ .

Message

HOP/TRACE/R

Message

HOP/NOTR/R

Message

HOP/REL/R

This program should release its debug log file for postprocessing.

Application

„«,

NAM Message

HOP/RS/R

The program should reinitialize and restart logging of all of its statistics.

Figure 3-54. Host Operator Command Supervisory Message Sequences

59 51 49 43

hop db unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

h°P Primary function code D0) o . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

db Secondary function code 0E16. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DB.

Figure 3-55. Host Operator Request-to-Activate-Debug-Code (H0P/08/R) Supervisory Message Format

60499500 R 3-57

ta

59 51 49 43 C

hop de unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
•essage.

hop Primary function code D0-| o . You can access this field uith the reserved symbol PFC, as

described in section 4. Its value is the value of the reserved symbol HOP.

de Secondary function OFi . You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DE.

Figure 3-56. Host Operator Request-to-Turn-Off-Debug-Code (HOP/DE/R) Supervisory Message Format

59 51 49 43

ta hop du unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code D0i o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

du Secondary function code 3. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DU.

Figure 3-57. Host Operator Request-to-Dump-Field-Length (HOP/DU/R) Supervisory Message Format

ta

ta

hop

trace

59 51 49 43

hop trace unused

Symbolic address of the application program's text area receiving this asynchronous supervisory

message.

Primary function code DQ/| . You can access this field with the reserved symbol PFC, as

described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol TRACE.

Figure 3-58. Host Operator Request-to-Turn-AIP-Traffic-Logging-On
(HOP/TRACE/R) Supervisory Message Format

3-58 60499500 R

ta

ta

hop

notr

59 51 49 43

hop notr unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code DO| . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol NOTR.

Figure 3-59. Host Operator Request-to-Turn-AIP-Traffic-Logging-Off
(HOP/NOTR/R) Supervisory Message Format

ta

59 51 49 43

hop re I unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code D0/| o . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

re I Secondary function code 0Di o . You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol REL.

Figure 3-60. Host Operator Request-to-Release-Oebug-Log-File (HOP/REL/R) Supervisory Message Format

The application program should call NETREL to

release the debug log file. To ensure proper
processing of the debug log file, the application
program must have issued a prior NETREL call as

described in section 6. There is no response to

the request-to-release-debug-log-file supervisory
message.

The host operator request-to-restart-statistics-

| gathering supervisory message (figure 3-61) is sent
from NAM to the application program when the opera-
tor enters the K-display command:

K. RS=a ppname

The application program should flush its statistics
counters, reset them to zero, and restart statistics
gathering. For this supervisory message to be
useful the application program should do at least

one of the following:

Restart AIP statistics gathering by calling
NETSTC (described in section 6) to turn AIP
statistics gathering off or back on.

Restart any other statistical information
internal to the application program that can be
used to tune the particular application. The
application program can write such statistical

ta

hop

ta

59 51 49 43

hop rs unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code D0j o. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol RS.

Figure 3-61. Host Operator Request-to-Restart-Stati sties-Gathering
(HOP/RS/R) Supervisory Message Format

60499500 R 3-59

information onto the AIP statistical file
ZZZZZSN by calling NETLGS (see section 6).

There is no response to the request-to-restart-
statistics-gathering message.

HOST SHUTDOWN
Conditions sometimes require the host • operator to
terminate network operations or to abort the appli-
cation program. The host operator can shut down
the entire data communications network or portions
of the network, element by element, including
executing application programs.

The operator has two shutdown options available.

I

The operator can select an idle-down option that
permits gradual termination of operations, usually
as a normal part of network service. The operator
can also select a disable option; this option
requests immediate termination of application pro-
gram operations and can either follow selection of
the idle-down option or be independently selected.

The type of shutdown determines the shutdown proc-
easing that should be performed by the application

I program. Figure 3-62 illustrates the three asyn-
chronous supervisory message sequences that can
occur during shutdown operations. The first
sequence begins when an idle-down option is selec-
ted; the application program receives an advisory
shut-down message, shuts down its connections
gracefully, and terminates network access without
additional network or host operator action. The

I second sequence begins when a disable option is
selected; the application program receives a man-
datory shut-down message and should not attempt to
terminate connections gracefully. The third
sequence is a hybrid of the first two; if insuffi-
cient time elapses between selection of an idle-
down option and selection of a disable option, the
application program can terminate some of its con-
nections gracefully, but not all of them.

The Network Access Method does not attempt to force
the termination of applications that do not call
NETOFF in response to an idle-down or disable
request. Normal termination of network operations,
however, depends on correct application behavior.
Applications that do not eventually call NETOFF
after receiving an idle or disable request must be
dropped by the host operator. This then permits
normal termination of the network software.

Figure 3-63 shows the two forms of the host-shutdown
supervisory message. The application program does
not issue a response to this supervisory message.

Application

-4

NAM Message

SHUT/INSO/R
(idle-down)

CON/END/R

CON/END /N

The application program fetches all queued
upline blocks from all terminals or other appli-
cation programs, then ends all connections prior
to a shutdown of the network.

The application program can then disconnect from
the network with a call to the AIP routine
NETOFF. (See section 5.)

Application NAM Message

SHUT/INSD/R
(disable)

The application program must perform an imme-
diate call to NETOFF to avoid being aborted by
system console operator commands during the
network shutdown in progress.

Application

~< _
NAM Message

SHUT/INSO/R
(idle-down)

CON/END/R

CON/END /N

SHUT/INSD/R
(disable)

The application program fetches as many queued
upline blocks as possible and ends as many
connections as possible prior to shutdown of the
network, then issues its NETOFF call immediately
after receipt of the second shutdown message.

Figure 3-62. Host Shutdown Supervisory
Message Sequences

As indicated by the reason codes included in the
message, many conditions are considered to be
logical errors by the network software. The
simpler conditions are completely defined within
the figure; more details are described here. I

The re field value of 1 is received when:

I

ERROR REPORTING
The primary mechanism used by the network software
to indicate logic errors to an application program
is an asynchronous supervisory message. In all
cases, the message sequence for this mechanism con-
sists of a single message (figure 3-64). The mes-
sage used in this sequence is the logical-error
supervisory message, shown in figure 3-65. The
application program does not send a response to
this supervisory message.

On an application-to-application connection,
the application connection specified an
application character type of 4 either in the
application block header or in a change-input- I
character-type supervisory message.

For a supervisory message the application
specified an application character type other
than 1, 2, or 3 in the application block header. |

On an application-to-terminal connection, an
application character type other than 2, 3, or
4 was used in a downline block header or in a I
change-input-character-type supervisory message.

3-60
60499500 R

59 51 49 43

shut insd unused ita

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

shut Primary function code 42-] . You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol SHUT.

insd Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol INSD.

i Indicator for type of shutdown message. This field can have the values:

This is a normal (warning) message of a pending network shutdown. The network soft-
ware will not permit any more logical connections to be established, but the applica-
tion program can inform existing connections of the shutdown, fetch queued input data
from all connections, and voluntarily end all connections before issuing a NETOFF
call. (See section 5.)

1 Network shutdown is beginning. The application cannot send or receive blocks on any
existing connection and no more logical connections can be established. The applica-
tion program must issue a NETOFF call immediately without ending any existing connec-
tions. (See section 5.)

You can access this field with the reserved symbol SHUTF as described in section 4.

Figure 3-63. Host-Shutdown (SHUT/INSD/R) Supervisory Message Format

Application NAM Message

ERR/LGL/R

Figure 3-64. Logical-Error Supervisory
Message Sequence

from deadlocking the network in such cases. This
limit applies only to logical-error messages queued
for the application program. The limit keeps the
program from committing large numbers of errors in
downline transmissions without periodically
fetching asynchronous supervisory messages sent
upline to identify the errors. The limit is

implemented as follows:

The re field value of 4 is received when:

The application connection number involved is

out-of-range for the application program and
therefore nonexistent. Connection numbers not
yet assigned to the application program, or
greater than maxacn, are out of range.

Application connection number is specified
in a change-connection-list or turn-list-
processing-off supervisory message.

Each time the network software sends an asyn-
chronous logical-error message to the applica-
tion program, a limit counter for the program
is incremented by one.

Each time the application program fetches all
queued asynchronous supervisory messages it has
outstanding, the limit counter for the program
is reset to zero.

The re field value of 5 is received when the
application program is not using a flow control
monitoring mechanism, such as that described earlier
in this section. The downline block causing the
block limit to be exceeded is discarded. The
application program should not transmit any more
downline blocks until it has received at least one
block-delivered message upline.

The re field value of 6 is received when the
network software attempts to protect itself from
application program flaws in supervisory message
processing logic. A partial limit imposed on the
number of logical errors permitted for an appli-
cation program prevents the application program

When the limit counter for the program reaches
100, a logical-error message with the re field
value of 6 is queued for the program. Until
the application program fetches all queued
asynchronous supervisory messages it has out-
standing, any downline transmission by the
program that causes a logical-error message
condition is discarded by the network software
without being processed.

When the limit counter reaches 100, additional
asynchronous supervisory messages might already be
buffered by AIP. In this case, the maximum number
that must be fetched to clear the counter may be as
high as 121.

60499500 R 3-61

ta

59 51 49 43 35

err Lgl re unused

abherr

firstwrd

ta

lgl

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code 84
1 ^> you can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol ERR.

Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol LGL.

Reason code identifying the cause of the message. This field can contain the values:

1 An invalid act value was specified in the block header of a downline data block
or in a OC/CICT/R message.

2 An invalid tic was encountered; either the value in the block header of a downline
block was greater than 2043, or the length of the block exceeded 410 central memory
words.

3

4

10

12

13

thru
15

An invalid abt value was specified in the block header of a downline block; either
the value was or greater than 3.

An invalid acn value was encountered in the block header of a downline data block,
in a synchronous supervisory message, or in an asynchronous supervisory message.

The application block limit of the connection has been exceeded for downline trans-
missions.

Hore than 100 ERR/LGL/R messages have been issued to the application program, and
the program still has upline synchronous supervisory messages queued for it. Until
the application program fetches all queued supervisory messages, all downline
asynchronous supervisory messages causing ERR/LGL/R messages are ignored.

An illegal or illogical supervisory message was encountered; either the combined
primary and secondary function codes of the message are not a valid value, or the
message is not permitted as part of supervisory message sequences currently in
progress with the application program, or a synchronous supervisory message was
sent on connection 0.

A fragmented input or output error has occurred; a caLl to NETPUTF, NETGETF, or
NETGTFL causes this supervisory message when the block involved in the call con-
tains more than 40 fragments, contains a fragment of more than 63 words, or the
total block length in words is inconsistent with the call's tlmax parameter or the
block header's tic value.

Either a block of type 6 or 7 was sent on a device-to-application connection, a
block of type 2 or 3 was sent after a block of type 6, or a block of type 6 or 7
was sent after a block of type 2.

Reserved by CDC for network software use.

An application is not allowed to send data blocks on a connection it has establish-
ed with a passive device of device types 1 through 4.

Reserved by CDC for network software use.

Figure 3-65. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 1 of 2)

3-62
60499500 S

16 Reserved for the NAM subsystem.
thru
256

You can access this field with the reserved symbol RC, as described in section 4.

abherr Application block header word associated with the supervisory message that caused the ERR/LGL/R
message. This field contains a non-zero word unless the re value is 7. You can access this

field with the reserved symbol ERRABH, as described in section 4.

firstwrd The first 60 bits of the supervisory message causing the ERR/LGL/R message are placed in this
field if the network software can supply the information. This field contains a non-zero word
unless the re value is 7. You can access this field with the reserved symbol ERRMSG, as

described in section 4.

Figure 3-65. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 2 of 2)

60499500 S 3-63 •

USER PROGRAM INTERFACE DESCRIPTIONS 4|

This section describes the language interface

requirements of an application program, the inter-
facing utilities available to a program, and those

aspects of network software internal interfacing
that affect program use of certain Network Access
Method (NAM) features. However, this manual does

not attempt to describe all network software inter-
faces. Portions of the network software that exe-
cute as application programs use supervisory mes-
sages that are either not discussed in this manual
or else that are modified from the format presented
in this manual. This section treats only those

areas of interface that are properly used by an
installation-written application program.

LANGUAGE INTERFACES

Application program use of the Application Interface

| Program (AIP) is essentially independent of the
language used to code the application program.
Parameter list and calling sequence requirements
are the same for COMPASS assembler language and
compiler-level languages. The residence of the AIP

routines, the form of the calling sequences, and
the utilities available to the application program
differ for COMPASS and compiler-level languages.

PARAMETER LIST AND CALLING
SEQUENCE REQUIREMENTS

The AIP statements and interfacing utilities use

| FORTRAN-style calling sequences and parameter lists;
that is, a parameter list contains one 60-bit word
per parameter. The address of this parameter list
is passed to the appropriate routine in register Al.
Linkage with the statement within the application
program is performed by executing a return jump

instruction (RJ) to the entry point. To provide
compact object code, traceback information is not
generated, and the parameter list need not be fol-
lowed by a word of zeros.

Because the statement parameters are passed by
address (called by reference), the NAM programmer
should be careful about substituting values when
defining the parameters. Those parameters identi-
fied as return parameters should not be specified
as constants or expressions in the call statement.
Such specifications can produce unpredictable errors
in program code. This restriction is compatible
with normal FORTRAN programming practices.

Return parameters are normally defined by variable
names, array names, array element names, or similar
symbolic addresses. Since the terminology for such
entities varies according to the programming lan-
guage used, this manual uses the term symbolic
address for all such possibilities. Unless other-
wise stated, numeric absolute or relative addresses
are not used in call statements.

Those parameters identified as input parameters can
be defined by constants, expressions that can be
evaluated to produce constants, or symbolic
addresses (as defined above). Input parameters are
usually defined by constants or expressions; this
manual uses the term value for all such possibil-
ities.

All AIP statement parameters used by a COBOL program
must be described in the Data Division as level 01
data entries, or data entries at other levels when
the entries are left-justified to word boundaries.
COBOL 5 programs that access fields within param-
eters must also describe the fields in the Data
Division as C0MP-4 numeric data entries to manipu-
late values within the fields as 6-bit entities.
Direct field access and AIP use is difficult using
COBOL; COMPASS macros or FORTRAN subroutines are
sometimes necessary to set up parameters before AIP
calls or to unpack them after AIP calls.

All direct calls from a COBOL program to AIP must
be coded as calls to FORTRAN-X subroutines. Refer
to section 5. Indirect use of AIP by a COBOL pro-
gram is also possible; refer to the Queued Terminal
Record Manager description later in this section.

The AIP statement calling sequence does not permit |
recursive calls.

PREDEFINED SYMBOLIC NAMES

The fields in NAM supervisory messages of appli-
cation character types 1 and 2 have been assigned
symbolic names so that they can be identified to

the utilities described later in this section.
These names are display-coded Hollerith characters
and are listed and defined in table 4-1. The

capitalized symbol appears as it should be used in
calls to NFETCH or NSTORE. The symbols are arranged
alphabetically within the table.

Each symbol consists of the characters identifying
its field within a message, combined with characters
identifying the specific message or group of mes-
sages. For example:

All primary function code fields can be accessed
through the symbol PFC.

All fields in messages with the primary func-
tion code mnemonic CON begin with CON; the
application list number field in such messages

is therefore CONALN.

All fields in the application block header word

can be accessed through symbols beginning with
ABH.

60499500 R 4-1

Some symbols are restricted to use in certain con-
| texts. For example, the FORTRAN 5 call:

IVAL=NFETCH(0 ,L"CONEND"

)

returns the primary and secondary code value for
the corresponding fields in a CON/END/R message;

| however, the FORTRAN 5 call:

CALL NSTORE(SMTA,L"CONEND",IVAL)

causes an error message indicating that the symbol
CONEKD is unrecognized. The symbol is unrecognized
because its context is incorrect. The correct

I FORTRAN call to store the information is:

CALL NSTORE(SMTA,L"PFCSFC",IVAL)

or the call:

CALL NSTORE(SMTA,L"PFCSFC",L,,CONEND")

There are no predefined names for the AIP statement
parameters described in section 5.

PREDEFINED SYMBOLIC VALUES

Some of the supervisory message fields with pre-
defined symbolic names have predefined values that
can be obtained through the utilities described
later in this section. Values for such names are
given in table 4-1, where the names are listed
alphabetically.

You can obtain the value assigned to a given sym-
bolic name in the released version of the network
software by using a form of the NFETCH utilities.
The NFETCH utilities comprise a macro that can be
called by a COMPASS program, and a similar subrou-
tine that can be called by a program written in a
high-level language.

Be careful in using names with predefined values;
in some instances, a name and corresponding value
have been assigned to a group of fields. Choosing
a wrong name in a utility call can fill more fields
than the programmer intends. The NAM programmer
should become familiar with all of the predefined
symbolic names before using the interfacing utili-
ties.

COMPASS ASSEMBLER LANGUAGE

Application programs coded in COMPASS use AIP
statements that make macro calls. These AIP macros
reside in the system text library NETTEXT.

Packing and unpacking supervisory message blocks in
a COMPASS program is easily accomplished using the
interfacing utilities NFETCH and NSTORE. These
field access utilities also reside in the system
text library NETTEXT. An application program using
either utility must first contain calls to SST and
NETMAC.

Application Interface Program Macro
Call Formats

For those AIP statement calls with parameters, three
forms of the COMPASS macro call are possible:

[label] macro-name parameters

This is the format of the standard call,
which produces the full calling sequence.

[labell] macro-name /LIST=label2 \ I

lLIST=register name)

When this format is used, macro expansion
assumes that the proper calling parameter
block is located at the address specified I
by the LIST value, loads this address into |
register Al, and performs the call to the
AIP procedure.

Iabel2 macro-name parameters, LIST |

When this format is used, macro expansion
produces a parameter block in place but
does not generate the call to the AIP pro-
cedure; the address of the statement using
this form is the address used in the second
form.

Use the first form when making a straightforward
call to the AIP procedures. Use the second form
once the parameter list has been created elsewhere
with the third form. The second and third forms |
save space when procedures are used several times.

Example 1:

NETPUT IHA.ITA

This statement is a direct call to execute the
NETPUT macro with the two symbolic address param-
eters shown.

Example 2:

PUT1 NETPUT IHA.ITA.LIST

This statement expands the NETPUT macro and creates
the indicated parameter list at symbolic address
PUT1 but does not execute NETPUT.

Example 3:

NETPUT LIST=PUT1

This statement actually executes the NETPUT macro
with the parameters in the list expanded at location
PUT1.

If a macro call is issued with an error, the COMPASS
assembler flags the error and provides an explana-
tion during assembly of the macro. A complete
listing of the assembly error messages from AIP-
related macros is provided in appendix B.

A summary of all the macro call formats available
appears in appendix D.

4-2
60499500 R

TABLE 4-1. RESERVED SYMBOLS

Symbol Entity Defined by Symbol
Predefined
Integer Value

ABHABN Application block number field in application block header for all upline or

downline blocks

None

ABHABT Application block type field in application block header for all upline or

downline blocks

None

ABHACT Application character type field in application block header for all upline

or downline blocks

None

ABHADR Process number address field in application block header for supervisor pro-

gram upline or downline blocks (system use only). Application connection

number field in application block header for all application program upline
or downline blocks.

None

ABHBIT Parity error flag bit in application block header for upline (input) blocks.
Auto-input mode flag bit in application block header for downline (output)

blocks.

None

ABHCAN Cancel previous blocks bit in application block header for upline (input)

blocks. Punch banner (lace) card bit in application block header for down-

line (output) blocks.

None

ABHIBU Input block undeliverable bit in application block header for upline (input)

blocks

None

ABHNFE No format effectors flag bit in application block header for downline (out-

put) blocks

None

ABHTLC Text-length-in-character-units field in application block header for all

upline or downline blocks

None

ABHTRU Truncation occurred bit in the application block header for upline (input)

data or supervisory message blocks

None

ABHWORD Application block header word for all upline or downline blocks None

ABHXPT Transparent mode transmission bit in application block header for all upline

or downline blocks

None

ACCON Application character type of CON supervisory messages, for use in applica-
tion block header

1

ACCTRL Application character type of CTRL supervisory messages, for use in applica-
tion block header

2

ACDBG Application character type of DBG supervisory messages, for use in applica-
tion block header

ACDC Application character type of DC supervisory messages, for use in applica-

tion block header

ACERR Application character type of ERR supervisory messages, for use in applica-

tion block header

ACFC Application character type of FC supervisory messages, for use in applica-

tion block header

ACHOP Application character type of HOP supervisory messages, for use in applica-

tion block header

ACIFC Application character type of IFC supervisory messages, for use in applica-

tion block header

ACINTR Application character type of INTR supervisory messages, for use in applica-

tion block header

60499500 R 4-3

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

ACK

ACLST

ACRQ

ACSET

ACSHOT

ACTCH

APP

BI

BIMARK

BRK

CB

CHAR

CICT

CON

CONAABN

CONAAWC

CONABL

CONABN

CONABZ

CONACN

CONACR

CONACRA

CONACT

CONAHDS

CONAHMT

CONAHWS

CONALN

CONANM

CONATWD

Entity Defined by Symbol

Secondary function code field for FC/ACK/R

Application character type of LST supervisory messages, for use in applica-
tion block header

Secondary function code field for CON/ACRQ messages

Application character type of SET supervisory messages, for use in applica-
tion block header

Application character type of SHUT supervisory messages, for use in applica-
tion block header

Application character type of TCH supervisory messages, for use in applica-
tion block header

Secondary function code field for INTR/APP/R

Primary function code field for BI/MARK/R

Primary and secondary function code fields for BI/MARK/R, including EB and
RB fields as zero

Secondary function code field for FC/BRK/R

Secondary function code field for CON/CB/R

Secondary function code field for CTRL/CHAR/R

Secondary function code field for DC/CICT/R

Primary function code field for connection management (CON) supervisory messages

Application block number field of CON/REQ/R

User validation control word in CON/REQ/R

Application block limit field in CON/REQ/R

Application block number field of CON/ACRQ/R

Block size in connection management (CON) supervisory messages

Application connection number field in connection management (CON)
supervisory messages

Primary and secondary function code fields for CON/ACRQ/R, including EB and RB
fields as zero

Primary and secondary code fields in CON/ACRQ/A including EB field set to 1

Application input character type field in CON/REQ/N

User validation control word in CON/REQ/R

User validation control word in CON/REQ/R

User validation control word in CON/REQ/R

Application list number field in CON/REQ/N

Requesting application program name in CON/REQ/R

User validation control word in CON/REQ/R

Predefined
Integer Value

2

<*16

CAOO

5

8
16

63
!6

None

None

None

None

None

None

6302

6382

None

None

None

None

None

None

None

16

16

16

• 4-4 60499500 R

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol
Predefined
Integer Value

CONCB Primary and secondary function code fields for CON/CB/R, including EB and RB

fields as zero

6305
16

CONDBZ Downline block size in CON/REQ/R None

CONDT Device type field in CON/REQ/R None

CONEND Primary and secondary function code fields in CON/END/R, including EB and RB

fields as zero

6306
16

CONENDN Primary and secondary code fields in CON/END/N including RB field set to 1 6346
16

CONFAM Login family name field in CON/REQ/R None

CONFO Login family ordinal field in CON/REQ/R None

CONHID Host node field in CON/REQ/R None

CONICT Application input character type field in CON/REQ/N None

CONNXP No transparent data field in CON/REQ/N None

CONORD Device ordinal field in CON/REQ/R None

CONOWNR Terminal name field in CON/REQ/R None

CONPAR First word of parameters in CON/REQ/R None

CONFL Page length field in CON/REQ/R None

CONPW Page width field in CON/REQ/R None

CONR Restricted interactive capability field in CON/REQ/R None

CONRAC Reason code field in CON/REQ/N and CON/REQ/A None

CONRCB Reason code field in CON/CB/R None

CONREQ Primary and secondary function code fields in CON/REQ/R, including EB and RB

fields as zero

6300
16

CONREQA Primary and secondary function code fields in CON/ACRQ/A including EB field

set to 1

6380
16

CONREQN Primary and secondary function code fields in CON/REQ/N including RB field

set to 1

6340
16

CONSCT Synchronous message type field in CON/REQ/R None

CONSDT Subdevice type field in CON/REQ/R None

CONSL Security limit field in CON/REQ/R None

CONT Terminal class field in CON/REQ/R None

CONTNM Terminal name field in CON/REQ/R None

COHUBZ Upline block size in CON/REQ/R None

CONUI User index field in CON/REQ/R None

CONUSE User name field in CON/REQ/R None

CONXBZ Transmission block size field in CON/REQ/R None

CTRCHAR Primary and secondary code fields in CTRL/CHAR/R, including EB and RB fields as

zero

C108
16

60499500 R 4-5

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

CTRDEF

CTRL

CTRRTC

CTRTCD

DB

DC

DCACN

DCACT

DCCICT

DCNXP

DCSCT

DCTRU

DE

DEFF

DU

EB

ENDD

ERR

ERRABH

ERRLG

ERRLGL

ERRMSG

FC

FCACK

FCACN

FCBRK

FCINA

FCINIT

FCINITN

Entity Defined by Symbol

Primary and secondary function code fields in CTRL/DEF/R, including EB and RB
fields as zero

Primary function code field in terminal control (CTRL) supervisory messages

Primary and secondary function code fields for CTRL/RTC/R, including EB and RB
fields as zero

Primary and secondary code fields in CTRL/CHAR/R, including EB and RB fields as
zero

Secondary function code field in HOP/DB/R

Primary function code field in DC/CICT/R

Application connection number field in DC/CICT/R

Application character type field in DC/CICT/R

Primary and secondary function code fields in DC/CICT/R, including EB and RB
fields as zero

No transparent data field in DC/CICT/R

Synchronous message character type field in DC/CICT/R

Primary and secondary function code fields in DC/TRU/R, including EB and RB
fields as zero

Secondary function code field in HOP/DE/R

Secondary function code field in CTRL/DEF/R

Secondary function code field in HOP/DU/R

Error bit in all supervisory messages

Secondary function code field in CON/END/R

Primary function code field in ERR/LGL/R

Application block header word in ERR/LGL/R

Reason code field in ERR/LGL/R

Primary and secondary function code fields in ERR/LGL/R, including EB and RB
fields as zero

First message text word in ERR/LGL/R

Primary function code field in flow control (FC) supervisory messages

Primary and secondary function code fields in FC/ACK/R, including EB and RB
fields as zero

Application connection number field in flow control (FC) supervisory messages

Primary and secondary function code fields in FC/BRK/R, including EB and RB
fields as zero

Primary and secondary function code fields in FC/INACT/R, including EB and RB
fields as zero

Primary and secondary function code fields in FC/INIT/R, including EB and RB
fields as zero

Primary and secondary code fields in FC/INIT/N including RB field set to 1

Predefined
Integer Value

C104

C1
16

C109

C10A

E
16

C2
16

None

None

C200

None

None

C201

16

16

16

16

16

16

4

3

None

6

84
16

None

None

8401

None

83
!6

8302

None

8300

8304

8307

8347

16

16

16

16

16

16

4-6 60499500 R

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol
Predefined
Integer Value

FCNAK Primary and secondary function code fields in FC/NAK/R, including EB and RB

fields as zero

8303,,

FCRBR Reason code field in FC/BRK/R None

FCRST Primary and secondary function code fields in FC/RST/R, including EB and RB
fields as zero

8301
16

FDX Secondary function code field in LST/FDX/R 3

HDX Secondary function code field in LST/HDX/R 4

HOP Primary function code field in host operator (HOP) supervisory messages M
16

HOPDB Primary and secondary code fields in HOP/DB/R, including EB and RB fields as

zero

D00E
16

HOFDE Primary and secondary code fields in HOP/DE/R, including EB and RB fields as

zero

D00F
16

HOPDU Primary and secondary code fields in HOP/DU/R, including EB and RB fields as

zero

D0O3
16

HOPNOTR Primary and secondary code fields in HOP/NOTR/R, including EB and RB fields as

zero

D007
16

HOPREL Primary and secondary code fields in HOP/REL/R, including EB and RB fields as

zero

D00D
16

UOPRS Primary and secondary code fields in HOP/RS/R, including EB and RB fields as

zero
D008

16

HOPTRCE Primary and secondary code fields in HOP/TRACE/R, including EB and RB fields as

zero

D002
16

INACT Secondary function code field in FC/INACT/R 4

INIT Secondary function code field in FC/INIT/R 7

INSD Secondary function code field in SHUT/INSD/R 6

INTR Primary function code field in user-interrupt (INTR) supervisory messages 80
16

INTRACN Application connection number field in user-interrupt (INTR) supervisory
messages

None

INTRAPP Primary and secondary function code fields in INTR/APP/R, including EB and RB
fields as zero

8002
16

INTRCHR Field containing ASCII alphabetic character A through Z in typeahead priority
data user-interrupt supervisory messages.

None

INTRRSP Primary and secondary function code fields in INTR/RSP/R, including EB and
RB fields as zero

8001
16

INTRUSR Primary and secondary function code fields in INTR/USR/R, including EB and
RB fields as zero

8000
16

LCONAC Length in 60-bit words of CON/ACRQ supervisory messages 2

LCONACA Length in 60 bit words of CON/ACRQ/A 2

LCONCB Length in 60-bit words of CON/CB/R 1

LCONEN Length in 60-bit words of CON/END/R 2

60499500 R 4-7

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol

LCONENN

LCONREQ

LCORQR

LCTRL

LDC

LERR

LFC

LFCACK

LFCBRK

LFCIHCT

LFCINIT

LFCINITN

LFCNAK

LFCRST

LG

LGL

LHOPDB

LHOPDE

LHOPDU

LHOPNTR

LHOPREL

LHOPRS

LHOPTRA

LINTR

LLST

LSHUT

LST

LSTACN

LSTALN

LSTDIS

LSTFDX

LSTHDX

Entity Defined by Symbol

Length in 60 bit words of CON/END/N

Length in 60-bit words of CON/REQ/R message

Length in 60-bit words of CON/REQ/N and CON/REQ/A

Length in 60-bit words of terminal control (CTRL) supervisory messages

Length in 60-bit words of DC/CICT/R

Length in 60-bit words of ERR/LGL/R

Length in 60-bit words of flow control (FC) supervisory messages (except FC/BRK)

Length in 60-bit words of FC/ACR/R

Length in 60-bit words of FC/BRK/R

Length in 60-bit words of FC/INACT/R

Length in 60-bit words of FC/INIT/R

Length in 60-bit words of FC/INIT/N

Length in 60-bit words of FC/NAK/R

Length in 60-bit words of FC/RST/R

Secondary function code field in HOP/LG/R

Secondary function code field in ERR/LGL/R

Length in 60-bit words of HOP/DB/R

Length in 60-bit words of HOP/DE/R

Length in 60-bit words of HOP/DU/R

Length in 60-bit words of HOP/NOTR/R

Length in 60-bit words of HOP/REL/R

Length in 60-bit words of HOP/RS/R

Length in 60-bit words of HOP/TRACE/R

Length in 60-bit words of INTR/USR/R and INTR/RSP/R

Length in 60-bit words of list management (LST) supervisory messages

Length in 60-bit words of SHUT/INSD/R

Primary function code field in list management (LST) supervisory messages

Application connection number field in list management (LST) supervisory messages

Application list number field in list management (LST) supervisory messages

Initial half duplex field in LST/HDX/R •

Primary and secondary function code fields in LST/FDX/R, including EB and RB
fields as zero

Primary and secondary function code fields in LST/HDX/R, including EB and RB
fields as zero

Predefined
Integer Value

(A
16)

16

C0
16

None

None

None

C003

C004

16

16

4-8 60499500 R

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol
Predefined
Integer Value

LSTOFF Primary and secondary function code fields in LST/OFF/R, including EB and RB

fields as zero

C000, £

LSTON Primary and secondary function code fields in LST/ON/R, including EB and RB
fields as zero

cooi
16

LSTSWH Primary and secondary function code fields in LST/SWH/R, including EB and RB
fields as zero

C002,,
lo

LTCH Length in 60-bit words of TCH/TCHAR/R 1

HARK Secondary function code field in TO/MARK/R, BI/MARK/R, and RO/MARK/R

NAK Secondary function code field in FC/NAK/R 3

NOTR Secondary function code field in HOP/NOTR/R 7

OFF Secondary function code field in LST/OFF/R 1

ONN Secondary function code field in LST/ON/R and PRU/ON supervisory messages

PFC Primary function code field in all supervisory messages None

PFCSFC Primary and secondary function code fields in all supervisory messages, including
EB and RB fields

None

RB Response bit in all supervisory messages None

RC Reason code field in all supervisory messages None

REL Secondary function code field in HOP/REL/R D
16

REQ Secondary function code field in CON/REQ messages

RO Primary function code field in RO/MARK/R CB
16

ROMARK Primary and secondary function code fields in RO/MARK/R, including EB and RB
fields as zero

CBO0
16

RS Secondary function code field in HOP/RS/R 8
16

RSF Secondary function code field in INTR/RSP/R 1

RST Secondary function code field in FC/RST/R 1

RTC Secondary function code in field in CTRL/RTC/R 9
16

SFC Secondary function code field in all supervisory messages None

SHUINS Primary and secondary function code fields in SHUT/INSD/R, including EB and RB
fields as zero

4206
16

SHUT Primary function code field in SHUT/INSD/R 42
16

SHUTF Shutdown type field in SHUT/INSD/R None

SPMSGO
thru
SPMSG9

The corresponding word zero through nine of any supervisory message None

SWH Secondary function code field in LST/SWH/R 2

TCD Secondary function code field in CTRL/TCD A
16

60499500 R 4-9

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol Predefined
Integer Value

TCH

TCHACN

TCHAR

TCHPL

TCHPtf

TCHTCH

TCHTCL

TO

TOMARK

TRACE

USR

Primary function code field in TCH/TCHAR/R

Application connection number field in TCH/TCHAR/R

Secondary function code field in TCH/TCHAR/R

Page length field in TCH/TCHAR/R

Page width field in TCH/TCHAR/R

Primary and secondary function code fields in TCH/TCHAR/R, including EB and RB
fields as zero

Terminal class field in TCH/TCHAR/R

Primary function code field in TO/MARK/R

Primary and secondary function code fields in TO/MARK/R, including EB and RB
fields as zero

Secondary function code field in HOP/TRACE/R

Secondary function code field in INTR/USR/R

64
16

None

None

None

6400
16

None

C4
16

C400,.
Id

2

Field Access Utilities

Two additional macros, NFETCH and NSTORE, are
provided to make message field definition and access
easier. Application programmers are urged to use
these macros as described below. Use of these
macros and their related predefined symbolic names
will simplify application program conversion under
future versions of the network software.

NFETCH Macro

A call to the NFETCH macro returns the contents of
a specific field within an array of one or more
words that comprise all or part of a supervisory
message block. The octal integer value returned by
the call is right-justified within the X or B
register specified in the call.

The format of the NFETCH macro call is given in
figure 4-1.

Execution of NFETCH destroys the contents of regis-
ters A5, X5, X6, and the X or B register specified
to receive the returned value. Execution of NFETCH
requires the application program to contain calls
to SST and NETMAC. Placing NETTEXT in the COMPASS
control statement defines the NFETCH macro and the
symbolic names used as the NFETCH field parameters.

LOCATION OPERATION VARIABLE

[label] | NFETCH I array,field,Xj or Bj

label Optional address label of the macro call.

array The address of the first word of the array from
which the field value should be obtained. This

parameter can be:

An address label

The name of a register address

Zero

If zero is declared, any predefined value for the

indicated symbolic name is returned.

field The predefined symbolic name of the field tor

which a value should be fetched from the array.

The possible contents of field are listed

alphabetically in table 4-1.

j The number of the X or B register which
should receive the value fetched, from the
array. The value is right-justified in Xj or
Bj on return from the call. When a B
register is used, the field to be fetched must
be < 18 bits long.

Figure 4-1. NFETCH Macro Call Format

4-10 60499500 R

As examples of NFETCH use, consider the following
operations

.

Example 1:

NFETCH MYARRAY.PFC.X1

This statement places the value of the primary
function code field within MYARRAY into register XI.

The primary function code field is identified by
the symbolic name PFC.

lple 2:

SX2 BUFFER
NFETCH X2,SFC,X3

These statements place the value of the secondary
function code field within BUFFER into register X3.
The secondary function code field is identified by
the symbolic name SFC, and the address label BUFFER
is supplied through register X2.

Example 3:

NFETCH
NZ

ARRAY,EB.X3
X3, ERROR

These statements place the value of the error bit
(EB) within ARRAY into register X3. If the value
in X3 is nonzero (if EB has a value of 1), a jump
to ERROR occurs.

LOCATION

[label]

label

array

field

value

OPERATION VARIABLE

NSTORE I array,field=value

Optional address label of the macro call.

The address of the first word of the array into

which the field value should be placed. This

parameter can be declared as an address label

or the name of an address register.

The predefined symbolic name of the field for

which a value should be stored in the array. The
possible contents of field are listed alphabetically

in table 4-1.

The value to be stored in the identified field

within the array. This parameter can be:

A right-justified integer

A right-justified, zero-filled character string

A symbolic name with a predefined value

(see table 4-1)

Bj or Xj, where j is the number of an X
or B register containing one of the first

two possibilities for value above.

Figure 4-2. NSTORE Macro Call Format

Example 4:

NFETCH 0,CON, XI

This statement returns the predefined value 63jg
in register XI. The value returned is that of the
primary function code field of all connection-
request supervisory messages, as identified by the

predefined symbolic name CON.

If an NFETCH macro call is issued with an error,
the COMPASS assembler flags the error and provides
an explanation during assembly of the macro. A
complete listing of the assembly error messages
from NFETCH is included in appendix B.

These statements store the value predefined for CTRL
in the primary function code field of MYARRAY. The
primary function code field is identified by the
symbolic name PFC, and the address label MYARRAY is

obtained through register X2.

Example 2:

NSTORE MYARRAY, FFC=CTRL

This statement performs the same operation shown in
example 1.

Example 3:

NSTORE MYARRAY, C0N0WT=7RTERMABC

NSTORE Macro

A call to the NSTORE macro sets the contents of a

specific field within an array of one or more words
that comprise all or part of a supervisory message
block. The format of the NSTORE macro call is given
in figure 4-2.

Execution of NSTORE destroys the contents of
registers A5, A6, X5, X6, X7, and any X or B regis-
ter specified in the call. Execution of NSTORE
requires the application program to contain calls
to SST and NETMAC. Placing NETTEXT in the COMPASS
control statement defines the NSTORE macro and the
symbolic names used as the NSTORE field parameters.

As examples of NSTORE use, consider the following
operations

.

Example 1

:

SX2
NSTORE

MYARRAY
X2, PFC=CTRL

This statement stores the terminal name TERMABC in
the owning console terminal name field of MYARRAY.
The owning console terminal name field is identified
by the predefined symbolic name C0N0WT.

If an NSTORE macro call is issued with an error, the
COMPASS assembler flags the error and provides an
explanation during assembly of the macro. Appendix
B contains a complete listing of the assembly error
messages from NSTORE.

COMPILER-LEVEL LANGUAGES

Application programs coded in compiler-level
languages such as FORTRAN use AIP statements that
make relocatable subroutine calls. Such statements
need not be declared as external routines. Entry
point references are satisfied by the CYBER loader;
the AIP routines are loaded from the local library
NETIO or NETIOD, which must be declared in an LDSET
or LIBRARY control statement.

60499500 R 4-11 |

BEAD, WRITE, and CONNEC are not employed when NAM
is used by a FORTRAN program for input and output
between the program and terminals. Terminals serv-

iced by an application program do not have logical
unit numbers.

ACCEPT and DISPLAY are not used when NAM is used by

a COBOL program for input and output between the

program and terminals. You can use these verbs in
COBOL programs that use other network application
programs , such as the CDC-vritten Transaction
Facility (TAF), for network access.

Packing and unpacking supervisory message blocks in
a compiler-level program is easily accomplished
using the interfacing utilities NFETCH and NSTORE.
These field access utilities reside in local library
NETIO or NETIOD.

Programs written using compiler-level languages can
also use the AIP routines indirectly through the
utility package called the Queued Terminal Record
Manager (QTRM). QTRM is described at the end of
this subsection and the use of QTRM is completely
defined in section 8. The subroutines comprising
QTRM reside in local library NETIO or NETIOD.

Application Interface Program Subroutine

Call Formats

Only one form of the AIP subroutine call is possible
in compiler-level language programs. This form is:

subroutine-name (parameters)

The syntax of this form is discussed in section 5.
A summary of all the calls available appears in
appendix D. The FORTRAN form of the subroutine
call format is the format used throughout this
manual when discussing the AIP routines.

Field Access Utilities

Two additional relocatable subroutines, NFETCH and
NSTORE, are provided to make message field defini-
tion and access easier. Use of these routines and
their related predefined symbolic names will
simplify application program conversion under future
versions of the network software. Because each call
to one of these routines causes a table scan, use
of the routines increases program execution time.
This increase can be minimized by setting up all
constants processed by calls to the routines with a
single set of calls at the beginning of the program.

NFETCH Function

A call to the NFETCH function subprogram returns an
integer value for the contents of a specific field
within an array of one or more words that comprise
all or part of a supervisory message block. NFETCH
can be used anywhere in a program expression that
an operand can be used; figure 4-3 defines the
format for NFETCH as it is used in an assignment'
statement.

The size of the field involved in the NFETCH call
determines the format of the content value returned.
The field is read as an octal value and the value
returned is right-justified as either an integer or
a display code character string.

[ivalue=] NFETCH(array,field)

ivalue= A return parameter; as input to the call, an
optional integer variable to receive the value

returned for the function.

array An input parameter, specifying the symbolic

address of the first word of the array from
which the field value can be obtained. This

parameter can be:

The array name

Zero

If zero is declared, any predefined value for the

indicated symbolic name is returned.

field An input parameter, specifying the predefined

symbolic name of the field for which a value

should be fetched from the array. The possible

contents of field are listed in table 4-1 . This

parameter must be left-justified with zero fill.

Figure 4-3. NFETCH Integer Function
FORTRAN Call Format

If either the field or array parameter is omitted
from the function statement, the application program
is aborted and a dayfile message is issued. (See
appendix B.)

As examples of NFETCH uses, consider the following
operations.

Example 1:

The FORTRAN 5 statement:

M=NFETCH(ARRAY ,L"EB"

)

makes M equivalent to the value of the error bit.
The error bit is identified by the predefined sym-
bolic name EB, left-justified with zero fill in the
call.

Example 2:

The FORTRAN 5 statement:

M=NFETCH(0,L"CON")

makes M the integer value 143g, equivalent to the
predefined value for the primary function code field
in all connection-request supervisory messages. The
primary function code field is identified by the
predefined symbolic name CON, left-justified with
zero fill in the call.

Example 3:

The FORTRAN 5 statement:

IF(NFETCH(ARRAY,L"EB").EQ.l) CALL ERROR

causes a jump to ERROR if the value of the error
bit (EB) within ARRAY is 1.

4-12 60499500 R

NSTORE Subroutine

A call to the NSTORE subroutine sets the contents

of a specific field within an array of one or more
words that comprise all or part of a supervisory

message block. Figure 4-4 gives the FORTRAN format

of the NSTORE call statement.

CALL NSTORE(array,field,value)

array A return parameter; as input to the call, the

symbolic address of the first word of the array

into which the field value should be placed.

This parameter is normally the array name.

field An input parameter, specifying the predefined

symbolic name of the field for which a value

should be stored in the array. The possible

contents of field are listed alphabetically in

table 4-1. This parameter must be left-

justified with zero fill.

value An input parameter, specifying the value to be

stored in the identified field within the array.

This parameter can be:

A right-justified integer value

A right-justified, zero-filled Hollerith

character string

A left-justified, zero-filled symbolic name
with a predefined value {see table 4-1).

Figure 4-4. NSTORE Subroutine
FORTRAN Call Format

Integer values stored by the NSTORE call are stored

as integers. Character strings are stored in dis-
play code form and symbolic names are converted to
octal equivalents of their predefined values when
stored. Only one field can be specified in each
call. A value can be stored in a field any time
after the array is declared.

If either the array, field, or value parameters are
not declared or are nonexistent, the application
program is aborted and a dayfile message is issued.
(See appendix B.)

As examples of NSTORE use, consider the following
operations

.

Example 1:

The FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"PFC",L"CON")

stores the predefined value for the primary function
code of all connection-request supervisory messages
in the primary function code field of ARRAY. The

primary function code value is identified by the

predefined symbolic name CON and the primary func-
tion code field by the predefined symbolic name PFC;

both names are left-justified with zero fill in the
call.

Example 2:

The FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"CONOWT",R"TERMABC")

stores the display coded terminal name TERMABC in

the owning console terminal name field of ARRAY.

The owning console terminal name field is identified

by the predefined symbolic name CONOWT, left-
justified with zero fill in the call.

Example 3:

The FORTRAN 5 statement:

CALL NSTORE (ARRAY,L"RB",1)

sets the response bit field in ARRAY to 1. The

response bit field is identified by the predefined

symbolic name RB, left-justified with zero fill in
the call.

Queued Terminal Record Manager Utilities

You can set up a teleprocessing service by inter-

facing an application program directly with AIP

through the subroutine calls described in section
5. This interface requires manipulation of many
bit-oriented fields, as described in section 2, and

multiple operations to perform a single function,
as described in section 3. These protocol require-

ments can be quite complex, dwarfing the portion of

a program's code that actually performs a teleproc-
essing service when the service itself is very

simple.

A FORTRAN programmer can use AIP directly with only

minor inconvenience when shifting and masking are

required. The NFETCH and NSTORE routines permit a
COBOL programmer to bypass most of the shifting and

masking problems of direct AIP use, but some remain.

Shifting and masking is extremely difficult for a
COBOL programmer when NFETCH and NSTORE cannot be

used because COBOL constrains field access to fields

that are multiples of 6 bits. NFETCH, which is

coded as a function and not as a subroutine, is not

directly callable from a COBOL program because COBOL

does not support functions. To use NFETCH, a COBOL
programmer must write a subroutine in another

applications language.

The Queued Terminal Record Manager (QTRM) utility

package allows compiler language users to remain
unaware of AIP protocol requirements. QTRM also
allows users of COBOL 5.2 (and later versions) to

create teleprocessing service programs using an
interface that is oriented to fields defined in
multiples of 6 bits.

QTRM is an indirect interface to the network; its
use is functionally analogous to directly calling
CYBER Record Manager. Using QTRM, an application

programmer can send messages to and receive messages
from a network of terminals as if the programmer
were reading and writing records or files in mass
storage. This parallelism is shown in figure 4-5^

QTRM is used through calls to the following seven

subroutines

:

QTOPEN, which is called once to establish
communication between the application program
and the network. A call to QTOPEN is analogous
to opening a mass storage file.

QTLINK, which is called to initiate an
application-to-application connection.

60499500 R 4-13

Compiler Language

User Program

CYBER Record Manager Queued Terminal Record Manager

CIO AIP

NIP

RMS
Controllers

Network
Processing

Units

Figure 4-5. QTRM Interface Level Analogy

QTGET, which is called each tine part or all of
a message is required from the network. A call
to QTGET is analogous to a single read operation
on a mass storage file.

QTPDT, which is called each time part or all of
a message is intended for the network. A call
to QTPHT is analogous to a single write oper-
ation on a mass storage file.

QTENDT, which is called to disconnect a single
terminal from communicating with the application
program.

QTCLOSE, which is called once to end communi-
cation between the application program and the
network. A call to QTCLOSE is analogous to
closing a mass storage file.

QTTIP, which is called to deliver a synchronous
supervisory message to a specified connection.

Operation of these procedures is monitored and
controlled through a network information table,
analogous to a file information table. The network
information table contains 10 central memory words
of information about each device the application
program can potentially service, and 10 words of
global information about the state of the appli-
cation program's communication with the network.

Application programs using QTRM can use only those
features of AIP that are provided through the QTRM
procedure calls. Such application programs should
not also contain calls to AIP routines other than

NFETCH and NSTORE.
functions

:

QTRM performs the following

Assigns all active device connections to a
single connection list and polls that list for
input on behalf of the application program

Performs all asynchronous supervisory message
exchanges required during application program
execution

Provides the final logical line zero byte term-
inator in downline blocks containing display
code characters

QTRM is a simplified alternative to AIP and there-
fore does not support all of the AIP features.
Features currently not supported by QTRM include
the following:

Parallel mode code execution, as provided
through NETSETP and SETCHEK calls

Fragmented buffer input and output, as provided
through NETGETF, NETPUTF, and NETGTFL calls

Application program connections with passive
(batch) devices

Half-duplex mode

Runtime selection of debug log file and statis-
tical file entries, as provided through NEIDBG
and NETSTC calls ; both files can be generated
or have generation suppressed through selection
of the appropriate library during loading of
the QTRM routines

4-14
60499500 S

Manipulation of application connection lists,
or direct polling of any list as provided
through NETGETL and NETGTFL calls

Use of different application character types
for input on the same connection, or on differ-
ent connections , or change of the application
character type used for input during the time
the program is connected to the network

Notification of inactive connections

Selective polling of input from a specific
connection, as provided through NETGET and
NETGETF calls

Transparent mode input

Disposition of the debug log file during program
execution, as provided through the NETREL and
NETSETF calls; postprocessing disposition of
the file is required

Transmission of messages to the debug log file,
as provided through NETLOG calls

Exchange package and central memory field length
dumps, as provided through NETDMB calls

Transmission of messages to the statistical log
file, as provided through NETLGS calls

Application supplied OHTCALL parameters for
application-to-application connections sending
or receiving user data during the establishment
of application-to-application connections

Sending a break (FC/BRK) or INTR/APP message

Qualified data as described in section 2

Logical identifiers (LIO's) in the establish-
ment of application-to-application connections

Section 8 contains a complete description of the
QTRM procedure calls and a sample program illus-
trating QTRM use by a COBOL programmer. QTRM
procedures are not discussed elsewhere because QTRM
use precludes direct use of the AIP routines docu-
mented by the remainder of this manual.

INTERNAL INTERFACES

The information in the remainder of this section is
not needed to create a Network Access Method appli-
cation program. This information is provided as
background for application programmers using the
parallel mode processing feature of NAM, programmers
with a need for understanding communication among
the components of the network software, and pro-
grammers needing to interpret a load map.

APPLICATION INTERFACE PROGRAM
AND NETWORK INTERFACE PROGRAM
COMMUNICATION

One copy of the Network Interface Program resides
at a control point and communicates with separate
copies of the Application Interface Program at each
control point containing an application program.
Communication between NIP and each copy of AIP
occurs through system control point calls initiated

by AIP. The mechanism for this communication is a
fixed-length buffer of status bits, pointers, and
data that is called a worklist.

Worklist Processing

When an application program requests connection
with the network, its copy of AIP establishes a
long-term connection with NIP. The long-term con-
nection exists until the program requests discon-
nection from the network, or until NIP is informed
of the program's failure or termination by the
operating system. While the long-term connection
exists, an additional short-term connection occurs
whenever AIP initiates a transfer of worklists be-
tween itself and NIP. The short-term connection
exists until NIP issues a system control point call
to end it.

The requests made by an application program to AIP
are either satisfied by AIP directly or collected
into the worklist contained within the AIP portion
of the application program's field length. AIP
places entries in this worklist until one of the
following occurs, then initiates the short-term
connection

:

NETON or NETOFF is called by the application
program. (See section 5.)

The worklist is full.

Another entry cannot be made without causing
the worklist to overflow.

The application program calls a routine (NETGET,
NETGETL, NETGETF, or NETGTFL) that obtains in-
put from the network's data structures, other
than AIP queues. (See section 5.)

NETCHEK is called.

The application program issues a nonforced
NETWAIT call to make itself available for roll-
out or any input , and no supervisory messages
or data are queued for it. (See section 5.)

The application program issues a forced NETWAIT
call.

The application program calls NETPUTF, unless
the total message text involved in the call is
small enough to fit in the worklist.

This worklist is used to queue outgoing supervisory
or data messages , and to request a supervisory or
incoming (upline) data message. A second buffer
acts as a queue for incoming supervisory messages.
When AIP initiates the short-term connection, it
checks to see whether its supervisory message buffer
is full; if not, AIP appends a request for supervi-
sory message input to the end of the worklist and
passes the worklist to NIP. The period during
worklist processing is the only time when NIP can
read from or write into the field length of AIP,
and then only when AIP initiates the action.

NIP processes the transferred worklist until all of
the entries are satisfied, then ends the short-term
connection. Worklist processing is suspended when:

The operating system rolls out the application
program.

60499500 S 4-15

NIP causes the application program to be rolled

out in response to the request of the program.

(See NETWAIT call, section 5.)

A worklist entry cannot be processed without

obtaining additional central memory, which is

not available.

Even if there are downline messages queued, no

worklist transfer occurs in these instances:

The application program calls a routine (NETGET,

NETGETF, NETGETL, or NETGTFL) to obtain asyn-
chronous supervisory messages and AIP transfers

any queued messages to the application.

The application program issues a NETWAIT call

with a flag value of and there are supervisory
messages or data available for the application.

Generally, an application program does not depend

on the status of worklist processing between its
corresponding AIP copy and NIP. Most programs can

adequately function when concerned only with text

area buffers and calls to AIP. However, the Net-
work Access Method does provide a mechanism that

allows an application program to monitor worklist

processing and execute code dependent on that proc-

essing. This mechanism is called parallel mode

operation.

Parallel Mode Operation

When an application program issues the call that

initiates the long-term connection, it identifies a

supervisory status word that is used by AIP as a

buffer for several flags. Among the supervisory

status word flags are worklist processing bits used
during parallel mode operations.

When an application program is not processing in

parallel mode (the normal, default condition), its

copy of AIP initiates the short-term connection
with a system control point call specifying that

recall is in effect. In this case, the program's

copy of AIP does not regain control of the central

processor until all worklist entries are processed

by NIP and the short-term connection is ended.

Because the application program cannot regain the

central processor until its copy of AIP has regained

the central processor, the program cannot perform
any processing in the interim.

Parallel mode operation is usually beneficial only
when used on a dual CPU system, because NIP ordi-

narily has a higher priority than any application

program and gains control of the central processor
after a call is made to it. NIP retains control

until it completes processing of the worklist

request

.

Processing in parallel mode is analagous to making

I operating system calls without recall. An applica-

tion program enters parallel mode by issuing a call

to the AIP routine NETSETP. While in parallel mode,

anytime AIP initiates the short-term connection, it

does so without specifying recall. The application
program's copy of AIP reacquires control of a cen-
tral processor as soon as the operating system's
scheduling algorithm permits , and AIP returns con-

trol to the calling point of the application program

proper. As long as the short-term connection

exists, the application program can continue proc-
essing with the sole restriction that it cannot

issue calls to any AIP routines other than NETCHEK

or NETOFF.

Calls to NETCHEK cause AIP to indicate the current

status of worklist processing using a bit in the

supervisory status word. After each NETCHEK call,

the application program must check the supervisory

status word. As soon as the bit indicating com-

pletion of worklist processing is set, the program

is free to issue any AIP call. Parallel mode proc-

essing is ended by a second call to the AIP routine

NETSETP.

The worklist processing completion bit serves

several purposes in parallel mode operation. Calls

to NETCHEK cause this bit to be set when processing

of the previous request to AIP has been completed,

even when that request did not cause a worklist

entry or transfer. When a call to NETCHEK results

in the completion bit being set, the application

program can:

Safely reuse any header area and text area used

in its last AIP call

Assume that any worklist transfer involved in

the previous AIP function request resulted in

the updating of the other bits in the super-
visory status word

When a call to NETCHEK does not result in the

completion bit being set, the application program

should issue additional NETCHEK calls before exe-

cuting any code dependent on either condition.

Calls to NETOFF end parallel mode operation by end-

ing both the long-term and short-term connections
simultaneously. NIP processes a worklist containing

a NETOFF call as if the worklist were transferred

while the application program was not processing in

parallel mode. Calls to NETCHEK are not necessary

to test completion of a NETOFF call.

OTHER SOFTWARE COMMUNICATION

A complete compiler or assembler listing for an

application program contains symbols and entry

points not discussed in this manual. These symbols

and entry points are used internally for interfacing

between NIP, AIP, and the operating system. Table
4-2 lists the names of internal procedure calls with

an outline of the function of each routine; these

calls should not be used directly by the application
program. In general, procedure names beginning with

the three characters NP$ are reserved for use by AIP

and should not be used by application programs.
Table 4-3 lists the tables and common blocks in-

volved in the processing of an application program's

AIP statements.

The Communications Supervisor, Network Supervisor,

and Network Validation Facility interface with NAM

via the AIP procedure calls described in section 5.

These interfaces use special supervisory messages

not described in section 3. These special super-
visory messages cannot be used in another NAM
application program.

NAM interfaces with the network processing unit
software through the Peripheral Interface Program,
which uses an internal block protocol not described
in section 2. These blocks are compiled or inter-
preted by NIP.

4-16 60499500 S

TABLE 4-2. AIP INTERNAL PROCEDURES

Name

NP$CLK

NP$DATE

NP$DBG

NP$DMB

NP$ERR

NP$GET

NP$GSM

NP$MSG

NP$ON

NP$OSIF

NP$PUT

NP$PUTF

NP$RCL

NP$READ

NF$RESP

NP$ROUT

NP$RTIM

NP$RND

NP$SEND

NP$SLOF

NP$SN

NP$SPRT

NP$ST£M

NP$TIM

NP$OCV

NP$USI

NP$WRTO

NPSWRTR

NT$WRTW

NP$XCDD

NP$XFER

Function

Used only when AIP is run with either the debugging or statistics option on; gets system clock
time.

Used only when AIP is run with either the debugging or statistics option on; gets current date.

Used only when AIP is run with the debugging option on; makes entries in the debug log file
(application program local file ZZZZZDN). These entries show results of calls to other AIP
routines by the program. (See section 6.)

Dumps field length to the application program local file ZZZZDMB.

Issues error messages to the application program's dayfile.

Creates NETGET, NETGETL, NETGETF, or NETGTFL worklist entry to send to NIP.

Refills AIP's supervisory message buffer. (See Worklist Processing.)

Issues dayfile message to NIP's dayfile.

Processes NETON call response from NIP.

Issues system control point (SSC) RA+1 call.

Creates NETPUT worklist entry to send to NIP.

Creates NETPUTF worklist entry to send to NIP.

Allows AIP to go into recall.

Used only when AIP is run with the debugging option on; reads job record for NETREL call.

Processes worklist responses from NIP.

Used only when AIP is run with the debugging option on; routes job to input queue for NETREL call.

Used only when AIP is run with the debugging option on; gets real time since deadstart.

Used only when AIP is run with the debugging option on; rewinds a file.

Called when a worklist must be transferred to NIP.

Used only when AIP is run with the debugging option on; executes SETLOF macro for NETSETF call.
(See section 6.)

Used only when AIP is run with the statistics option on; accumulates statistical data.

Used only when AIP is run with the statistics option on; makes entries in the debug log file
(application program local file ZZZZZSN). (See section 6.)

Allows COMPASS users access to common symbol definitions.

Used only when AIP Is run with the statistics option on; gets CPU time.

Used to update AIP control variables.

Used to update the S and I bits in the supervisory status word. (See section 5.)

Used only when AIP is run with the debugging option on; writes one word in the debug log
file (application program local file ZZZZZDN). (See section 6.)

Used only when AIP is run with either the. debugging or statistics option on; writes end-of-record
to the debug log file or statistics file. (See section 6.)

Used only when AIP is run with either the debugging or statistics option on; writes entry to the
debug log file or statistics file. (See section 6.)

Used only when AIP is run with the statistics option on; converts numbers to decimal form in
display code.

Transfers a worklist to NIP.

60499500 R 4-17

TABLE 4-3. AIP INTERNAL TABLES AND BLOCKS

Name Function

NP$DB Used only when AIP is run with the debugging option on; contains calling parameters for

debugging routine NP$DBG.

1 NP$GETS Controls variables used to process NETGET, NETGETL, NETGETF, and NETGTFL calls.

NP$LOF Used only when AIP is run with the debugging option on; parameter block for SETLOF

macro. (See section 6.)

1 NF$MODE Used to keep track of the state the application is in.

NF$NWL Worklist for the application program.

NP$NWNC Used only when AIP is run with the debugging option on; aids In character conversion.

NP$ONAM NETON entry for the debug log file.

NP$PUTS Controls variables used to process PUT calls.

NP$SMB AIP supervisory message buffer for the application program. This block is included in

the last 100g words of NP$NWL.

NP$STAT Used only when AIP is run with the debugging option on; contains statistics gathered by

NIP. (See section 6.)

1

NP$TAA Used to reference the text area array (TAA) in fragmented NETGETF and NETPUTF or NETGTFL

calls

.

1 NP$ZHDR Header entry for the debug log file (application program local file ZZZZZDN).

4-18 60499500 R

APPLICATION INTERFACE PROGRAM CALL STATEMENTS

This section describes the Application Interface
Program (AIP) statements used by a network appli-
cation program to access the network, control
network processing, and transmit and receive the
messages described in sections 2 and 3.

SYNTAX
Application Interface Program statements are used
in COMPASS programs, or in programs written in
high-level languages such as FORTRAN. In most
high-level languages, only positional parameters
can be used; AIP statements conform to this syntac-
tical requirement and, therefore, do not permit the
use of keywords. The interpretation attached to a
given parameter is determined solely by its location
within the string of parameters of each AIP state-
ment. All input parameters must be supplied; there
are no defaults.

The FORTRAN positional form is used throughout this
section to present AIP statements. Coding the
statements when they are used in other languages
requires few modifications. For example, in the
form of a COMPASS macro call, a sample NETGETL
statement has the form:

[label] NETGETL aln, ha, ta, tlmax

This converts to the FORTRAN subroutine syntax,
which is:

CALL NETGETL (aln, ha, ta, tlmax)

Use of LIST and label are discussed in section 4

where COMPASS interface requirements are given.

The FORTRAN subroutine syntax, in turn, converts to
the following COBOL syntax for the same statement:

ENTER FORTRAN-X NETGETL
USING aln, ha, ta, tlmax

The mnemonic variables identifying each parameter
are defined in the statement descriptions, along
with any coding constraints imposed on them. Commas
delimit parameters in all languages; the signifi-
cance of blanks depends on the language used.
Unless otherwise specified, all values supplied for
parameters should be decimal integers.

General definitions of terms appearing in parameter
descriptions are given in the glossary. More
detailed definitions and parameter constraints that
depend on the programming language used are given
in section 4 under the heading of Language Inter-
faces. Program structural considerations that
depend on command use are described in section 6
under the headings of Commands and Dependencies.

NETWORK ACCESS STATEMENTS
An application program uses two AIP statements to

begin and end access to the network's resources.
The NETON statement must be used before the program
can use any other AIP statement except NETREL,
NSTORE, NFETCH, NETSETF, NETCHEK, NETSETP, or

NETOFF. The NETOFF statement must be used after
all AIP functions are completed to cause the AIP
portion of the application program to perform vital

housekeeping tasks; these tasks are associated with
debug log file, statistical file, and login proc-
essing by the network software.

CONNECTING TO NETWORK (NETON)

The NETON statement (figure 5-1) performs
following functions:

the

Identifies the application program to the net-
work so that the Network Validation Facility
(NVF) can validate the right of the program to
access the network's resources

Causes AIP to establish communication with NIP

Identifies a word to be used for communication
from AIP to the program, outside of the super-
visory message mechanism (figure 5-2)

Informs the network software of limitations on
the number of logical connections the program
can handle

Causes AIP to begin debug log file and statis-
tical file compilation, if AIP contains code
permitting this (See section 6.)

An application program must successfully complete a
NETON call before it can use any AIP statement
other than NETOFF, NETCHEK, NETREL, NETSETF, or
NETSETP. If another AIP statement is used before a

NETON call is successfully completed, AIP aborts
the job and issues a message to the job's dayfile.
The incorrectly placed call has no other effect.

An application program's NETON statement is success-
fully validated by the Network Validation Facility
when the program name contained in the NETON call
appears in the system common deck COMTNAP. If the
program is defined as a privileged application in
the local configuration file, it must meet the
requirements for such to be successfully validated.
(See section 6.)

If validation is not successful, the application
program is aborted. If validation is successful,
the program has access to the network as long as a
NETOFF statement is not issued and communication
with NIP continues.

60499500 R 5-1

CALL NETON (aname,nsup,status,minacn,maxacn)

aname An input parameter/ specifying in 6-bit display code the name of the application program, as it

is identified for log in and for CONTNAP. This can be one to seven alphabetic and numeric

characters, but the first must be alphabetic. This parameter must be left-justified, with
blank fill. It is advisable to avoid names beginning with the letters NET to make loader map

interpretation easier. The following application program names are reserved for internal

networks use:

nsup

status

ALL LOGIN NUL PTFS TCF
BYE L060UT NVF QTFI TVF
CS HCS PFU QTFS
HELLO NAM PNI RBF
IAF NIP PSU RHF
ITF NS PTFI TAF

Use of some of these names causes the program job to be aborted; use of the remainder can cause
unpredictable errors.

A return parameter; as input to the call, nsup is the symbolic address of the supervisory
status word for communication from AIP to the application program. This word has the format
shown in figure 5-2. The upper bit of this word is relevant during parallel mode processing
only; this bit reports the status of worklist processing and is updated after each AIP call
except NETSETP. Bits 56 and 55 are set when indicated in the figure to report the status of
the data message and supervisory message queuing performed by AIP. These bits are valid after
any AIP call except NETDBG, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. This word need not
contain zeros at the time of the NETON call and should not be changed at any time by the
application program.

A return parameter; as input to the call, status is the symbolic address of the NETON call

status word. On return from the call (or when worklist processing is complete if the call was
made in parallel mode), the content of this word indicates the network software's disposition
of the application program's NETON attempt. The values of status can be:

NETON was successful.

1 NETON was unsuccessful because NIP was not at a control point or did not have enough
resources to service this application program (too many application programs running
at the same time).

2 NETON was rejected because the maximum number of allowed applications has already
netted on.

3 NETON was rejected because the application program has a status of disabled in the
Communications Supervisor's tables. The program must be rerun after its entry in the
local configuration file has been changed or after the host operator has enabled it.

minacn An input parameter, specifying the smallest application connection number the application
program can process; < minacn < maxa en < 4095. The network software assigns acn values to
connections, beginning with the number specified for minacn. (See section 2.)

maxacn An input parameter, specifying the Largest applicaton connection number the application program
can process; < minacn < maxacn < 4095. The network software does not attempt to complete any

more connections to the program after all connections from minacn through maxacn (inclusive)

are in use.

Figure 5-1. NETON Statement FORTRAN Call Format

5-2 60499500 S

mc

59 57 55 54 29

nsup unused mc

AIP request and worklist processing completion bit. This bit is relevant only in parallel mode.
When any AIP routine other than NETSETP is entered and the AIP function is not completed, the bit
is set to zero. If the AIP function is completed, the bit is set to one, if a worklist transfer
was required. If the bit is zero, the program cannot call any AIP routines except NETCHEK or
NETOFF nor can it use the header area and text area of the last AIP call until the bit is set to
one. The bit is set to one by NETCHEK when the last AIP function is completed.

Reserved for CDC use.

NAM available bit. This bit is set to one upon return from a NETON call if NAM is available, and
zero if NAM is not available. The bit is also set to zero by AIP when AIP is informed by the
operating system that NAM is no longer available.

Input- in-queue bit. This bit is set to one if NIP has either data messages or synchronous
supervisory messages queued for the application. The bit is valid after any AIP call except a
call to NETDBG, NETLOG, NETDMB, NETLGS, NETREL, NETSETF, NETSETP, or NETSTC. This bit is set to
zero when no data messages or synchronous supervisory messages remain queued for the program.

Supervisory message in queue bit. This bit is set to one if asynchronous supervisory messages are
queued on application connection number for this program. This bit is valid after any AIP call
except a call to NETDBG, NETDMB, NETLGS, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. The s bit
is set to zero when no asynchronous supervisory messages remain queued for the program.

A count of the number of supervisory messages and network data blocks on the debug log file when
library NETIOD is used. A NETON call (or a NETREL call with a nonzero Ifn parameter value) resets
the count to zero (described in section 6).

Figure 5-2. Supervisory Status Word Format

If the program loses communication with NIP, it is
aborted by the operating system unless it is a
system control point job. System control point
jobs are not aborted. The program can reprieve
itself from such an abort by using the NOS REPRIEVE
macro. The program should examine the last error
flag that was set for the job (by using the NOS
GETJCR macro) to determine the cause of the pro-
gram's failure.

If the program failed because NAM failed, it should
issue a NETOFF call and successfully complete
another NETON call before issuing any further calls
to the AIP routines. The NETOFF call, used in this
case, causes AIP to perform internal housekeeping
functions and finish information transfer to the
debug log and statistical files; the second NETON
causes AIP to reinitialize internal tables and
reestablish communication with NIP. If a new copy
of NIP becomes available prior to the NETOFF call,
the second NETON call causes the NETOFF statement
to be ignored and program processing can be resumed
after new logical connections have been established.
Alternating NETON and NETOFF statement sequences in
parallel mode have unpredictable results.

The network software tracks an application program
and issues dayfile messages concerning the program
on the basis of the aname parameter used in the
program's NETON call. The operating system, how-
ever, is unaware of this name and issues dayfile
messages on the basis of the job name assigned to
the program according to the contents of the job's
command portion. So that all dayfile messages

concerning the same program can be identified, you
should take the steps described in section 6.

Figure 5-3 contains a portion of a FORTRAN program
that correctly performs a NETON call. The program,
called RMV2, is identified by that name in COMTNAP
and in the local configuration file as a non-
privileged application. BMV2 can process up to
three logical connections but requires connections
to be numbered beginning with 2. RMV2 uses the
integer word NSUP as a supervisory status word for
communication from AIP and tests for successful
completion of the NETON call through the integer
word NSTATUS.

COMMON NSUP,HA(2),TA(200,2)

•
NAME=4HRMV2
NSTATUS=0
MINACN=2
MAXACN=4
CALL NETON (NAME,NSUP,NSTATUS,MINACN,MAXACN)
IF (NSTATUS.NE.O) GO TO 999

•
•

999 PRINT 998, NSTATUS
998 FORMAT (NSTATUS IS,112)

STOP

Figure 5-3. NETON Statement FORTRAN Example |

60499500 R 5-3

DISCONNECTING FROM NETWORK (NETOFF)

The NETOFF statement (figure 5-4) performs the

following functions:

Breaks AIP communication with NIP

Causes AIP to finish formatting and transferring
information for the debug log file and statis-
tical file, if these files are being compiled

Clears AIP internal tables so that the program
can issue another NETON call, if necessary

NETWORK BLOCK INPUT/OUTPUT
STATEMENTS

Input and output on logical connections can be
handled through unified or fragmented buffers.
Input can be obtained from a connection either by
its individual connection number, or according to
its membership in a list of connections. AIP
statements permit an application program four
options for input or output from a specific con-
nection and two options for input from a connection
on a list.

CALL NETOFF

Figure 5-4. NETOFF Statement FORTRAN
Call Format

The NETOFF statement is used after all processing
of logical connection activities is finished and
the program is prepared to end connection with the
network. After the NETOFF call is completed, no
AIP statement other than NETON, NETREL, NSTORE,
NFETCH, NETDMB, and NETSETF can be used. The NETOFF
call breaks any logical connection still existing
between the application program and a device or
another application and prevents the network soft-
ware from attempting to establish any new connec-
tion. After the NETOFF statement is processed, the
application program continues to execute under
control of the operating system.

An application program should always issue a NETOFF
call before terminating. Otherwise, the network
software informs consoles or other application
programs with which connections exist that the
program has failed; passive device connections are
disposed of by the network software as if the
program had failed. Unless a NETOFF call is com-
pleted or NETREL is called, the debug log file
compiled during job execution cannot be correctly
disposed of. Unless a NETOFF call is completed,
the statistical file compiled during job execution
will not exist.

The NETOFF statement can also be used in a reprieval
situation. This use is described under Connecting
to Network (NETON).

SPECIFIC CONNECTIONS

The four options for specific connection input and
output are as follows:

Fetch input to a single, unified buffer (NETGET
statement)

Fetch input to an array of buffers (NETGETF
statement)

Send output from a single, unified buffer
(NETPUT statement)

Send output from an array of buffers (NETPUTF
statement)

Inputing to Single Buffer (NETGET)

You can use NETGET to obtain an asynchronous super-
visory message from application connection number
0. You can also use NETGET to fetch synchronous
supervisory messages and network data blocks from
application connection numbers other than 0.

Synchronous supervisory messages and network data
blocks are never queued on logical connection 0.

Each NETGET call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the call. The NETGET call places the

block header in the application program's block
header area and the network block in the application
program's text area. The NETGET statement has the
format shown in figure 5-5.

CALL NETGET (acn,ha,ta,tlmax)

acn An input parameter, specifying the application connection number of the logical connection from
which a block is requested. This parameter can have the values:

Transfer one asynchronous supervisory message.

minacn _< Transfer one network data block or synchronous supervisory message from the
acn <_ maxacn logical connection with the indicated acn.

A return parameter; as input to the call, ha is the symbolic address of the application
program's header area. The header area always contains an updated application block header
after return from the call.

ha

Figure 5-5. NETGET Statement FORTRAN Call Format (Sheet 1 of 2)

5-4 60499500 R

ta

tlmax

A return parameter; as input to the call, the symbolic address of the first word of the buffer
•array constituting the text area for the application program. On return from the call, the
text area contains the requested block if a block was delivered to the application. The text
area identified by ta should be at least tlmax words long.

An input parameter, specifying the maximum length in central memory words of a block the
application program can accept. The value declared for tlmax should be less than or equal to
the length of the text area identified in the same calL; if tlmax is greater than the length of
the text area, the block transfer resulting from the NETGET call might overwrite a portion of
the program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has
specified for input from the connection. The following ranges are valid:

act=1 1 £ tlmax £410 for 60-bit (one per word) transparent characters

act=2 1 _< tlmax < 273 for 8-bit (7.5 per word) ASCII characters

act=3 1 < tlmax < 410 for 8-bit (5 per word) ASCII characters

act=4 1 < tlmax £ 205 for 6-bit (10 per word) display code characters

A tlmax value of can be legally declared but results in an input-block-undeliverable
condition; that is, an application block header is returned with a set ibu field, even when an
empty block of application block type 2 is queued (a block with a tic value of 0).

Figure 5-5. NETGET Statement FORTRAN Call Format (Sheet 2 of 2)

I
If no network block is available from the indicated
connection, AIP returns a null block; that is, AIP
places a header word with an application block type
of zero in the header area, and leaves the text
area unchanged from what it contained after any
previous transfer.

The application program indicates the size of its

I

buffer in each NETGET call. If a network block
larger than this size is queued from the specified
connection, the network block remains queued. AIP
copies the header word of the block into the appli-
cation program's block header area, sets the ibu
bit of the header to one to indicate the condition,
and places the actual length of the queued block in
the tic field of the header. The application pro-
gram's text area is unchanged from what it contained
after any previous transfer. To obtain the still-

| queued network block, the program must issue another
NETGET call indicating a buffer size sufficient to
accommodate the queued block, or issue a DC/TRU/R

asynchronous supervisory message to have the data
truncated. (See section 3.) If block truncation
is in effect at the time of the NETGET call, then
the block is delivered with the tru bit set in the
header

.

If the application program's text area is larger
than the block transferred by the NETGET call, the
portion of the text area after the last word used
for the block remains unchanged from what it con-
tained after any previous transfer. If the trans-
ferred block does not completely fill the last word
used for it , all character positions in the last
word used are altered by the transfer. Only the
leftmost character positions of the last word
included in the block header word tic field value
contain meaningful data.

Figure 5-6 contains two examples of NETGET use.
The first occurrence is in fetching asynchronous

I connection-request supervisory messages. Fetching

INTEGER TA(26),HA,TLMAX,0VTLMAX
DATA HA/0/,TA/20*0/,TLHAX/10/

NACN=0
1 CALL NETGET(NACN,HA,TA,TLMAX)

IF((NSUP.AND.O"02000000000000000000") .EQ.O)
1G0 TO 2

GO TO 1

2 CONTINUE
•
•

NACN=TERH(IACN)

3 CALL NETGET (NACN,HA,TA,TLMAX)
IF(NFETCH(HA,L"ABHABT").EQ.O) GO TO 4
IF(NFETCH(HA,L"ABHIBU").EQ.1) GO TO 5

6 CONTINUE
•
•

GO TO 3

5 OVTLHAX=NFETCH(HA,L"ABHTLC") /7.5
ATEMP=NFETCH CHA,L"ABHTLC") /7.5
IF(ATEMP.NE.0VTLMAX>0VTUIAX=OVTLMAX + 1

IF(0vTLMAX.GT.26) GO TO 9
CALL NETGET (NACN,HA,TA,OVTLMAX)
GO TO 6

4 CONTINUE
•

9 STOP

Figure 5-6. NETGET Statement FORTRAN 5
Examples

60499500 R 5-5

continues until no asynchronous messages are
reported via the supervisory status word (test of

NSUP contents). The second appearance of NETGET is

in a loop polling for any messages queued on a

| device connection; the polling loop continues until

a NETGET call returns a null block. The block
header word HA is tested after each call to detect
the null block, which has an application block type
(ABHABT) of zero.

The value chosen for TLMAX in this example is

adequate for both a connection-request supervisory
message of thirteen 60-bit characters and for a

logical line of 72 teletypewriter characters, or

for a minimum-sized network block of 100 characters
from a longer logical line, with an application
character type of 2 used for input. The text area
array TA has a dimension of twice TLMAX words, in
case the test of ABHIBU fails and a block larger
than anticipated must be transferred (third NETGET
call).

Inputing to Fragmented Buffer Array (NETGETF)

You can use NETGETF to obtain an asynchronous
supervisory message from application connection
number 0. You can also use NETGETF to fetch
synchronous supervisory messages and network data
blocks from application connection numbers other
than 0. Synchronous supervisory messages and
network data blocks are never queued on logical
connection 0.

Each NETGETF call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the call. The NETGET call places the

block header in the application program's block
header area. It divides the block into fragments
of whole central memory words and places each
fragment in a separately addressed application
program text area. The NETGETF statement has the
format shown in figure 5-7.

The text areas used are defined for AIP by the text
area address array identified in the NETGETF call.
This text area address array has the format given
in figure 5-8. I

The application program indicates the total size of
its text area buffers in each NETGETF call through
fields in the text area address array. If a block
larger than this total size is queued from the
specified connection, the block remains queued.
AIP copies the header word of the block into the
application program's header area, sets the ibu bit
of the header to one to indicate the condition, and
places the actual length of the queued block in the
tic field of the header. The application program's
text areas are unchanged from what they contained
after any previous transfer. To obtain the still-
queued message block, the program must issue another I
NETGETF call, indicating a total text area size
sufficient to accommodate the queued block, or it
must issue a DC/TRU/R supervisory message (see
section 3).

If the total size of the application program's text
areas is larger than the block transferred by the
NETGETF call, the portions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans-
fer. If the transferred block does not completely
fill the last word used for it, all character
positions in the last word used are altered by the
transfer. Only the leftmost character positions of
the last word included in the block header word tic
field value contain meaningful data.

If no message block is available from the indicated
logical connection, AIP returns a null block; that
is, a header word with an application block type of
zero is placed in the header area, and the text
areas remain unchanged from what they contained
after any previous transfer.

CALL NETGETF(acn,ha,na,taa)

acn An input parameter, specifying the application connection number of the Logical connection
from which a block is requested. This parameter can have the values:

Transfer one asynchronous supervisory message.

minacn <^ Transfer one network data block or synchronous supervisory message from the
acn <_ maxacn logical connection with the indicated acn.

ha A return parameter; as input to the call, ha is the symbolic address of the application
program's header area. The header area always contains an updated application block header
after return from the call.

na An input parameter, specifying the number of fragments the block should be divided into. The
number used should be the same as the number of central memory word entries in the text area
address array identified by the taa parameter; if na is greater than the length of the text
area address array, the block transfer resulting from the NETGETF call might overwrite a
portion of the program. Parameter na can have values 1 _< na < 40.

taa An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas. The array identified by taa has the
format shown in figure 5-8.

Figure 5-7. NETGETF Statement FORTRAN Call Format

5-6 60499500 R

taa^

size.:

address;

taa«

h

59 39 30 18

unused size
1

unused address-]

•

taa„

b

unused cna unused address.na

The symbolic address of the beginning of the array used in the NETGETF call.

The Length in central memory words of block fragment i. This field can contain the values
1 _< size

i < 63. The sum of all na values for size
i
defines the size in central memory

words of ffie largest block the call can transfer; this sum is the equivalent of the Umax
parameter in the NETGET statement. The sum of all na values for size can be 0, but this
results in an input-block-undeliverable condition; that is, an application block header is
returned with a set ibu field, even when an empty bLock of application block type 2 is
queued (a block with a tic value of 0).

The relative numeric address of the first word of the application program text area to
receive block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

Figure 5-8. NETGETF Statement Text Area Address Array

| Figure 5-9 contains examples of NETGETF use. The
program uses the first NETGETF call to fetch a
block containing an entire screen of data, which
AIF fragments into 12 text areas containing one
60-character physical line each. The application
character type chosen for input from the logical
connection is 4. The program continues to fetch
full screen buffers of data until a null block is

encountered by the test of ABHABT. The text areas
used are 12 separately addressed 6-word arrays
(LINE1 through LINE12), which initially contain
blanks (DATA statements). The text area address
array (TAA), contains 12 corresponding words; each
word contains the relative address of a text area,
obtained with the LOCF function. Although the
array TAA has a dimension of 24, only the first 12

entries are expected to be used; therefore, a value
of 12 is assigned to NA in its DATA statement.
Only the first assignment statement constructing
TAA is shown; because each text area will contain
six words of ten 6-bit characters each, a size of 6

is declared in each TAA entry.

The second NETGETF call recovers a block not
delivered by the original call because the block was
larger than expected. This condition is detected
by the test of ABHIBU, as returned by the first
NETGETF call. The second call is issued with more
of the text area address array specified, so that
all 24 text areas potentially can be used.

Outputing From Single Buffer (NETPUT)

You can use NETPUT to send asynchronous supervisory
messages to application connection number 0. Tou
can also use NETPUT to send synchronous supervisory
messages and network data blocks to application
connection numbers other than 0. Synchronous
supervisory messages and network data blocks are
never sent on logical connection 0.

DIMENSION LINE 1 (6),. . .,LINE24(6)
INTEGER HA,TAA(24),0VRFLNA,TERM(20>
DATA NA/12/,HA/0/,LINE1/6*L ,,,7,...,LINE24/6*L'"7

TAA (1)=SHIFT(6,30).OR. L0CF (LINED

NACN=TERH(IACN)
CALL NETGETF (NACN,HA,NA, TAA)
IFCNFETCH(HA,L"ABHABT").Ea.O) GO TO
IF(NFETCH(HA,L"ABHIBU").EQ.1> GO TO
CONTINUE

•
•

GO TO 1

0VRFLNA=NFETCH(HA,L"ABHTLC")/60.0
ATEMP=NFETCH (HA,L"ABHTLC") /60.0
IF(ATEMP.NE.0VRFLNA>0VRFLNA=0VRFLNA
IF(0VRFLNA.GT.24) GO TO 9
CALL NETGETF (NACN,HA,0VRFLNA,TAA)
GO TO 6
CONTINUE

9 STOP

+ 1

Figure 5-9. NETGETF Statement
FORTRAN 5 Examples

Each NETPUT call requests AIP to form a block from
the information located in the application program's
block header and text areas. The calling appli-
cation program must construct a complete block
header, as described in section 2. The text portion
of the block can be either a network data block, as

60499500 R 5-7

described in section 2, or a supervisory message
block, as described in section 3. The block formed
by AIF is sent to the logical connection specified
in the block header. The NETPUT statement has the

I format shown in figure 5-10.

CALL NETPUTCha,ta)

ha An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

ta An input parameter, specifying the
symbolic address of the application
program's text area. The text area must
contain a valid network data or super-
visory message block, correctly described
by the contents of the block header area.

Figure 5-10. NETPUT Statement
FORTRAN Call Format

Figure 5-11 contains an example of NETPUT use. The I
program has fetched an asynchronous supervisory
message and determined that the message is a con-
nection request from a console. The header area
contains the connection-request block header.
Because asynchronous supervisory messages use an
application character type of one, the connection-
accepted message being created in the example
requires the first NSTORE call to place a 1 in the
tic field. The response message is only one
central memory word, viewed as a single character.
The next four lines of code modify the first word
of the connection-request message, contained in
text area TA. First, the NSTORE call sets the
response bit (RB). Next, the NSTORE call places a
list number in the connection-accepted message,
followed by an application character type of 4.

Six-bit display code characters are to be used for
input from this connection, an option that is legal
for consoles because they use the interactive
virtual terminal interface. Finally, the NETPUT
call sends the completed message on application
connection number 0. The incoming block header
already contained this number, so the program did
not need to supply it while constructing the out-
going block header.

To reduce data transfer overhead, downline data is

sometimes buffered by AIP within the application
program's field length. Completion of a NETPUT
call therefore does not necessarily mean that the

downline data has been transferred to the network.

When an application program is not operating in
parallel mode, return from a NETPUT call is equiv-
alent to completion of the call, and the application
program can reuse the header area and text area
specified in the call immediately. When an appli-
cation program is operating in parallel mode,
return from the call is not equivalent to completion
of the call. Completion of the call must be deter-
mined through the supervisory status word bits. If

completion is not detected when these bits are
checked, completion must be forced through calls to
NETCHEK. The header area and text area cannot be
reused safely until completion occurs. Otherwise,
AIP might transfer information on the wrong connec-
tion or data other than what the application
intended to transfer as part of the block.

Actual transfer of downline data occurs any time
the application program makes an AIP call that
requires access to the network software's data
structures. Any NETGET or NETGETF call causes
downline transfers when the call is not made on
connection number 0. Any NETWAIT call with a flag
value of one causes downline transfers. A NETGETL
or NETGTFL call causes downline transfers when the
call is not made on list number 0. Other AIP calls
do not necessarily cause Immediate downline trans-
fers, and downline data buffered by AIP may remain
untransferred if the application program is swapped
out by the operating system. Downline data buf-
fered by AIP might also remain untransferred if the

application program schedules its own central
processor usage with the COMPASS macro RECALL,'

instead of using calls to NETWAIT. To force the
transfer of downline data buffered in AIP, call
NETCHEK. (See Worklist Processing in section 4.)

•

CALL NSTORE (HA,L"ABHTLC",1)
CALL NST0RE(TA(1),2LRB,1)
CALL NST0RE(TA(1),L"C0NALN",TERH<1,8))

CALL NST0RE(TA(1),L"CONACT",4>
CALL NETPUT (HA,TA)

Figure 5-11. NETPUT Statement
FORTRAN 5 Example

Outputing From Fragmented Buffer

Array (NETPUTF)

You can use NETPUTF to send asynchronous supervisory
messages to application connection number 0. You
can also use NETPUTF to send synchronous supervisory
messages and network data blocks to application
connection numbers other than 0. Synchronous
supervisory messages and network data blocks are
never sent on logical connection 0.

Each NETPUTF call requests AIP to form a message
block from the information located in the appli-
cation program's block header and scattered text
areas. The calling application program must con-
struct a complete block header, as described in
section 2. The text portion of the block can be
either a network data block, as described in section I

2, or a supervisory message block, as described in
section 3. The block formed by AIP is sent to the
logical connection specified in the block header.
The NETPUTF statement has the format shown in figure
5-12. |

5-8 60499500 R

CALL NETPUTFCha,na,taa)

ha An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

na An input parameter, specifying the number
of fragments the block is divided into.
The number used should be the same as the
number of central memory word entries in
the text area address array identified by
the taa parameter; if na is greater than
the length of the text area address array,
the block transferred by the NETPUTF call
might contain meaningless information
appended to the last meaningful fragment.
Parameter na can have the values 1 < na <

40. ~ ~

taa An input parameter, specifying the
symbolic address of the first word of the
one-dimensional array defining the
application program's text areas. The
array identified by taa has the format
shown in figure 5-13.

Figure 5-12. NETPUTF Statement
FORTRAN Call Format

NAM assembles the text portion of the block trans-
ferred by the call from separately addressed text
areas scattered through the application program's
field length. The addresses and sizes of these
text areas are supplied to A1F through a text area
address array specified in the NETPUTF call. (The
text area address array is shown in figure 5-13.)
The total size of all of the text areas identified
in the text area array should be greater than or

equal to the central memory word equivalent of the
number of characters specified in the block header.
If the block header declares the block to contain
fewer central memory words than all the text areas
contain, the portion of the text areas beyond the
size declared in the block header will not be
included in the transferred block.

To reduce data transfer overhead, downline data is
sometimes buffered by AIP within the application
program's field length. Completion of a NETPUTF
call therefore does not necessarily mean that the
downline data has been transferred to the network.

When an application program is not operating in
parallel mode, return from a NETPUTF call is
equivalent to completion of the call, and the
application program can reuse the header area and
text areas specified in the call immediately. When
an application program is operating in parallel
mode, return from the call is not equivalent to
completion of the call. Completion of the call
must be determined through the supervisory status
word bits. If completion is not detected when
these bits are checked, completion must be forced
through calls to NETCHEK. The header area and text
areas cannot be reused safely until completion
occurs. Otherwise, AIP might transfer information
on the wrong connection or data other than what the
application intended to transfer as part of the
block.

Actual transfer of downline data occurs any time
the application program makes an AIP call that
requires access to the network software's data
structures. Any NETGET or NETGETF call causes
downline transfers when the call is not made on
connection number 0. Any NETWAIT call with a flag
value of one causes downline transfers. A NETGETL
or NETGTFL call causes downline transfers when the
call Is not made on list number 0. Other AIP calls
do not necessarily cause immediate downline trans-
fers, and downline data buffered by AIP might
remain untransferred if the application program is

taa.]

sizes

address.;

h

59 39 30 18

unused size] unused address
1

•

taana

h

unused size„ unused address,,

The symbolic address of the beginning of the array used in the NETPUTF call.

The length in central memory words of block fragment i. This field can contain the values
1 _< size.} < 63. The sun of all na values for size; defines the size in central memory
words of tne block to transfer; this sum must be less than or equal to 410 central memory
words.

The numeric relative address of the first word of the application program text area
containing block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

Figure 5-13. NETPUTF Statement Text Area Address Array

60499500 R 5-9

swapped out by the operating system. Downline data
buffered by AIP might also remain untransferred if
the application program schedules its own central
processor usage with the COMPASS macro RECALL,
instead of using calls to NETWAIT. To force the
transfer of downline data buffered in AIP, call
NETCHEK. (See Worklist Processing in section 4.)

| Figure 5-14 contains an example of NETPHTF use.
The program sends a block containing an entire
screen of data to an interactive console. AIP
assembles the block from text areas containing one
logical (and physical) line each. The application
character type used for the block is 4. The pro-
gram uses 12 text areas of separately addressed

| 7-word arrays (0LINE1 through 0LINE12), containing
6-bit display code characters and 12-bit zero byte
terminators (DATA statements). The text area
address array, OTAA, contains 12 corresponding
words; each word contains the relative address of a
text area, obtained with the LOCF function. Because
the array OTAA has a dimension of 12, a value of 12
is assigned to ONA in its DATA statement. Only the
first assignment statement constructing OTAA is

I

shown. Because each text area contains seven words
of ten 6-bit characters each, a size of 7 is
declared in each OTAA entry.

Inpuring to Single Buffer (NETGETL)

You can use NETGETL to obtain an asynchronous
supervisory message from application connection
number 0. Application connection number is
always part of application list number 0. When a
NETGETL call specifying input from list is
issued, any asynchronous supervisory messages
queued for the program are returned before list
scanning continues to other connection numbers on
list 0. Synchronous supervisory messages and net- 1

work data blocks on connection numbers other than
|

zero can also be obtained when their connection
numbers have been assigned to list 0.

Each NETGETL call causes NAM to select (on a
rotating basis) one of the logical connections from
a specified list. NAM only chooses a connection
that has network data blocks queued and that has
not been turned off by a LST/OFF/R supervisory
message. One network data block is transferred
from the NIP queue of the selected connection for
each call to NETGETL. The NETGETL call places the
block header in the application program's header
area and the block body in the application's text
area. Figure 5-15 shows the format of the NETGETL
statement.

CONNECTIONS ON LISTS

The two options for input from connections on lists
are as follows:

Fetch input to a single, unified buffer (NETGETL
statement

)

Fetch input to an array of buffers (NETGTFL
statement)

Each NETGETL statement causes the connection list
to be scanned only once. Scanning begins with the
connection immediately following the connection
from which a block was previously transferred. The
first connection on the list is examined after the
last one on the list. Scanning ends when a con-
nection with a queued input block is found. If no
connection has a queued input block, scanning ends
with the connection preceding the one at which
scanning started.

•

•
DIMENSION 0LINE1 (7),...,0LINE12(7)
INTEGER HA,0TAA<12),0NA,TERN<20)
DATA 0NA/1 2/,HA/07,0LINE1 /"A8CDEFGHIJ", . . .,L"1 2345678",0/,. . .,
1DATA 0LINE12/ ,,ABCDEFGHIJ",...,L"1234567o" ,

,0/
•
•

0TAA(1>=SHIFTC6,30).0R.L0CF(0LINE1>
•
•

CALL NST0RE(HA,L"ABHABT",2>
CALL NSTORECHA,L"ABNADR",TER«(IACN>
CALL NST0RE(HA,L"ABHABN",1)
CALL NST0RECHA,L"ABHACT",4>
CALL NST0RE(HA,L"ABHNFE",1)
CALL NST0RECHA,L"ABHTLC",840)
CALL NETPUTF(HA,0NA,0TAA)

•
•

Figure 5-14. NETPUTF Statement FORTRAN 5 Example

5-10 60499500 R

ha

ta

CALL NETGETL(aln,ha,ta,tlmax)

aln An input parameter, specifying the number of the connection list to be scanned for a queued
block. This parameter can have the values:

Obtain all asynchronous supervisory messages queued on application connection
number first, then any data or synchronous supervisory message blocks queued
on other connections on list zero.

1 <. aln _< 63 Obtain one data or synchronous supervisory message block from one connection
on the indicated list.

A return parameter; as input to the call, the symbolic address of the application program's
block header area. The header area always contains an updated application block header word
after return from the call.

A return parameter; as input to the call, the symbolic address of the first word of the buffer
array constituting the text area for the application program. On return from the call, the text
area contains the requested block if a block was available and the text area was large enough.
The text area identified by ta should be at least Umax words long.

tlmax An input parameter, specifying the maximum length in central memory words of a block the
application program can accept. The value declared for tlmax should be less than or equal to
the length of the text area identified in the same call; if tlmax is greater than the length of
the text area, the block transfer resulting from the NETGETL call might overwrite a portion of
the program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has
specified for input from the connection. The following ranges are valid:

act=1 1 £ tlmax £410 for 60-bit (one per word) transparent characters

act=2 1 < tlmax < 273 for 8-bit (7.5 per word) ASCII characters

act=3 1 _< tlmax _< 410 for 8-bit (5 per word) ASCII characters

act=4 1 _< tlmax _< 205 for 6-bit (10 per word) display code characters

A tlmax value of can be legally declared but results in an input-block-undeliverable
condition; that is, an application block header is returned with an ibu value of 1, even when an
empty block of application block type 2 is queued (a block with a tic value of 0).

Figure 5-15. NETGETL Statement FORTRAN Call Format

If data or supervisory message blocks are not
available from any connection on the list, a null
block is returned. A header word with an appli-
cation block type of zero is placed in the header
area, and the text area is unchanged from its
content after the last block was obtained. Null
blocks are not returned from each connection.

The application program indicates the size of its

I

buffer in each NETGETL call. If a block larger
than this size is available for transfer, the block
remains queued, unless data truncation has been
requested. AIP copies the header word of the block
into the application program's block header area,
sets the ibu bit of the header to one to indicate
the condition, and places the actual length of the
queued block in the tic field of the header. The
application program's text area is unchanged from
what it contained after any previous transfer. To
obtain the still-queued . block, the program must
issue a separate NETGET call, indicating a buffer
size sufficient to accommodate the queued block, or

| it may request a truncated block using the DC/TRU/R
asynchronous supervisory message (see section 3).

The connection pointer within the list is incre-
mented regardless of whether a transfer occurs, so
the same connection is not involved in a second
NETGETL call.

If the application program's text area is larger
than the block transferred by the NETGETL call, the
portion of the text area after the last word used
for the block remains unchanged from what it con-
tained after any previous transfer. If the trans-
ferred block does not completely fill the last word
used for it, all character positions in the last
word used are altered by the transfer. Only the
leftmost character positions of the last word
included in the block header word tic field value
contain meaningful data.

Figure 5-16 contains an example of NETGETL statement |
use. The program has assigned all interactive con-
soles to list when accepting connection with them
(code not shown). A NETGETL call is used to
periodically poll list for asynchronous super-
visory messages affecting new or existing connec-
tions, and for interactive input affecting passive

60499500 R 5-11

INTEGER TA(26),HA,TLMAX,0VTLHAX

DATA HA/07,TA/26*0/,TLNAX/13/

•
NALN=0

1 CALL NETGETL CNALN,HA,TA,TLNAX)
IF(NFETCH(HA,L"ABHABT").E9.0) GO TO

IF(NFETCHCHA,L"ABHABT").NE.3> GO TO
CALL SMP(HA,TA,TLMAX)
GO TO 1

4 IF(NFETCHCHA,L"ABHIBU").EQ.D GO TO
2 CONTINUE

GO TO 1

3 OVTLMAX=N FETCH (HA,L"ABHTLC") II. 5

ATEHP=NFETCHCHA,L"ABHTLC")/7.5
IF <ATEHP.NE.OvTLNAX)OVTLMAX=OVTLMAX
IFC0VTLMAX.GT.26) GO TO 9

NACN=NFETCH(HA,L"ABHADR")
CALL NETGET CNACN,HA,TA,OVTLMAX)

•
•

GO TO 1

5 CONTINUE
•

9 STOP

+ 1

Figure 5-16. NETGETL Statement

FORTRAN 5 Example

batch connections. The TLMAX value of 13 is

adequate for both supervisory messages of appli-

cation character type 1 and 72-character logical
lines or a minimum-sized network block of 100

characters in ASCII (application character type 2)

from the interactive consoles. Each time list is

polled by the NETGETL call, the block header area

HA is tested to determine the block type. If a

null block (ABHABT of 0) is found, polling ceases.
If a block type of 1 or 2 is found, the block is

processed (code not shown) and polling continues.
If a supervisory message (block type of 3) is found,

a subroutine called SMP is entered to process the

supervisory message and polling of list continues.

The NETGET call recovers a block not delivered by

the original call because the block was larger than

expected. This condition is detected by the test

of ABHIBU, as returned by the NETGETL call. The

NETGET call is issued with more of the text area
buffer available; OVTLMAX can be up to twice TLMAX

before the text area is completely filled.

Inputing to Fragmented Buffer

Array (NETGTFL)

You can use NETGTFL to obtain an asynchronous

supervisory message from application connection
number 0. Application connection number is always

part of application list number 0. When a NETGTFL
call specifying input from list is issued, any
asynchronous supervisory messages queued for the

program are returned before list scanning continues
to other connection numbers on list 0. Synchronous
supervisory messages and network data blocks on

connection numbers other than zero can be obtained
when their connection numbers have been assigned to

list 0.

Each NETGTFL call causes NAM to select (on a

rotating basis) one of the logical connections from

a specified list. NAM only chooses a connection
that has blocks queued and has not been turned off

by a supervisory message. One block is transferred

from the NIP queue of the selected connection for

each call to NETGTFL; the block header is placed in

the application program's header area and the body

is placed in the application's text areas. Figure
5-17 shows the format of the NETGTFL statement.

CALL NETGTFL<aln,ha,na,taa)

aln An input parameter, specifying the number of the connection list to be scanned for a queued

block. This parameter can have the values:

Obtain all asynchronous supervisory messages queued on application connection
number first, then any data or synchronous supervisory message blocks queued

on other connections on list zero.

1 _< aln <_ 63 Obtain one data or synchronous supervisory message block from one connection

on the indicated List.

ha A return parameter; as input to the call, the symbolic address of the application program's

block header area. The header area always contains an updated application block header after
return from the call.

na An input parameter, specifying the number of fragments the block should be divided into. The

number used should be the same as the number of central memory word entries in the text area

address array identified by the taa parameter; if na is greater than the length of the text

area address array, the block transfer resulting from the NETGTFL call might overwrite a

portion of the program. Parameter na can have the values 1 £ na _< 40.

taa An input parameter, specifying the symbolic address of the first word of the one-dimensional

array defining the application program's text areas. The array identified by taa has the
format shown in figure 5-18.

Figure 5-17. NETGTFL Statement FORTRAN Call Format

5-12 60499500 R

Each NETGTFL statement causes the connection list
to be scanned only once. Scanning begins with the
connection immediately following the connection
from which a block was previously transferred. The
first connection on the list is examined after the
last one on the list. Scanning ends when a con-
nection with a queued input block is found. If no
connection has a queued input block, scanning ends
with the connection preceding the one at which
scanning started.

The text areas used are defined for AIP by the text
area address array identified in the NETGTFL call.
This text area address array has the format shown

| in figure 5-18.

The application program indicates the total size of
its text area buffers in each NETGTFL call through

I

fields in the text area address array. If a block
larger than this total size is queued from the
specified connection, the block remains queued,
unless truncation is in effect. (See section 3.)
AIP copies the header word of the block into the
application program's header area, sets the ibu bit
of the header to one to indicate the condition, and
places the actual length of the queued block in the
tic field of the header. The application program's
text areas are unchanged from what they contained
after any previous transfer. To obtain the still-

| queued block, the program must issue a separate
NETGETF call, indicating a buffer size sufficient
to accommodate the queued block. The program also
can request data truncation using the DC/TRU/R
asynchronous supervisory message. (See section
3.) The connection pointer within the list is
incremented regardless of whether a transfer occurs,
so the same connection is not involved in a second
NETGTFL call.

If the total size of the application program's text
areas is larger than the block transferred by the
NETGTFL call, the portions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans-
fer. If the transferred block does not completely
fill the last word used for it, all character
positions in the last word are altered by the
transfer. Only the leftmost character positions of
the last word indicated by the block header word
tic field value contain meaningful data.

If data or supervisory message blocks are not
available from any connection on the list, a null
block is returned. A header word with an appli-
cation block type of zero is placed in the header
area, and the text areas are unchanged from their
contents after the last block was obtained. Null
(empty) blocks are not returned from each connec-
tion.

Figure 5-19 contains an example of NETGTFL use. |
The program previously assigned all interactive
consoles to list when accepting connection with
them (code not shown). A NETGTFL call is used to
periodically poll list for asynchronous super-
visory messages affecting new or existing connec-
tions, and for interactive input affecting console
connections. If the poll is successful (does not
return a null block) and returns an asynchronous
supervisory message block, subroutine SMP is called
to process the message. If the poll returns a
network data block header but no block (test of |
ABHIBU fails), a NETGETF call is issued with a
total text area buffer size larger than in the
original call; this NETGETF call should successfully
retrieve the queued block.

taa^

size.:

address.;

taa.

4

59 39 30 18

unused size
1

unused address.)

•

taan unused size„ unused address.na

The symbolic address of the beginning of the array used in the NETGTFL call.

The length in central memory words of block fragment i. This field can contain the values
1 < size^ < 63. The sum of all na values for size.j defines the size in central memory
words of the largest block the call can transfer; this sum is the equivalent of the Umax
parameter in the NETGETL statement. The sum of all na values for size can be 0, but this
results in an input-block-undeliverable condition; that is, an application block header is
returned with the ibu field set, even when an empty block of application block type 2 is
queued (a block with a tic value of 0).

The numeric relative address of the first word of the application program text area to
receive block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

Figure 5-18. NETGTFL Statement Text Area Address Array

60499500 R 5-13

•
•

DIMENSION LINE1 (6),...,LINE24C6)
INTEGER HA,TAA (24),OVRFLNA
DATA NA/12/,HA/0/,LINE1/6*L ,"7,...,LINE24/6*L"'7

•
•

TAAC1)=SHIFT(6,30) .OR.LOCFCLINE1)

•
•

NALN=0
1 CALL NETGTFL (NALN,HA,NA,TAA)

IF(NFETCH(HA,L"ABHABT").E«.0) GO TO 5

IF(NFETCH(HA,L"ABHABT").NE.3) GO TO 4

CALL SMP(HA,NA,TAA)
GO TO 1

4 IF(NFETCH(HA,L"ABHIBU").EQ.1) GO TO 3

2 CONTINUE
•

•
GO TO 1

3 OVRFLNA=NFETCH(HA,L"ABHTLC"> /60.0
ATE"P=NFETCH(HA,L"ABHTLC")/60.0
IF(ATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA + 1

IF(OVRFLNA.GT.24) GO TO 9
NACN=NFETCH (HA,L"ABHADR")
CALL NETGETF(NACN,HA,OVRFLNA,TAA)
GO TO 2

5 CONTINUE
•
•

9 STOP

Figure 5-19. NETGTFL Statement
FORTRAN 5 Example

that an application character type of 4 is used for
input, but the size of the LINE1 text area is
adequate for both application character type 4

lines and the application character type 1 words
used for asynchronous supervisory messages. The
FORTRAN function LOCF stores the address of each of

the text area arrays in TAA, and the TAA entry has
a corresponding length of 6; only the first TAA
assignment statement is shown.

PROCESSING CONTROL STATEMENTS
The three processing control statements NETWAIT,
NETSETP, and NETCHEK cause or reduce processing
delays to alter the application program's effi-
ciency. These three statements are used in
conjunction with the supervisory status word
established by the application program in its NETON
statement. NETWAIT and NETCHEK can be used by any
application program; NETSETP is used only by pro-
grams performing parallel mode processing, as
described in section 4.

SUSPENDING PROCESSING (NETWAIT)

The NETWAIT statement (figure 5-20) performs the |
following functions:

Allows an application program to make itself a

candidate for rollout by the operating system
or otherwise suspend its processing

Allows the application program to declare a
maximum time for processing suspension

NAM fragments the block transferred by the NETGTFL
or NETGETF call into 12 (NA) or more (OVRFLNA) text

areas (LINE1 through LINE24), identified in the

24-entry text area address array (TAA). Each text
area is intended to hold one 60-character display
coded physical line from a full page of input. NAM
places each line into six consecutive central
memory words. The calculation of OVRFLNA assumes

Allows the application program to delay resump-
tion of processing until input is available for

it on any of its logical connections, or on
connection zero

Causes the supervisory status word (NETON nsup
parameter) for the program to be updated on
return from the NETWAIT call

CALL NETWAIT(time,flag>

time

flag

An input parameter, 1 <_ time _< 4095, specifying the number of seconds for which the application
program should be suspended. If a value of zero is declared, a default value of one is used;

if a value greater than 4095 is declared, a default value of 4095 is used.

An input parameter, specifying the conditions under which processing should be resumed,

parameter can have the values:

This

Return from NETWAIT call (resume processing) when input is available from any connec-

tion, or when the period declared by the time parameter has elapsed. A minimum time
of 1 second is used if input is not available immediately. When a flag value of zero

is declared and input is available immediately, the value declared for the time

parameter is ignored.

Return from NETWAIT call (resume processing) when the period declared by the time

parameter has elapsed, regardless of whether input is available from any connection.
Also forces buffer output to be transmitted.

Figure 5-20. NETWAIT Statement FORTRAN Call Format

5-14 60499500 R

Calls to NETWAIT with nonzero flag values always
suspend processing when suspension is possible.
Calls to NETWAIT with zero flag values suspend
processing only when no input is available.

| NETWAIT calls with a flag value of zero should only
be made after all outstanding asynchronous super-
visory messages have been fetched by the program.
A NETWAIT call with a flag value of zero made while
any asynchronous supervisory message remains queued
always results in immediate return to the program,
regardless of whether any other input is available.
Such calls represent unnecessary additional proc-
essing by AIF and the program and do not cause
transfer of worklists that are not completely filled
(effectively delaying output resulting from previous
calls to NETPUT or NETPUTF).

If NETWAIT is called while the program is operating
in parallel mode, parallel mode operation is
ignored, and the program is suspended. Parallel
mode operation is reinstated when return from the
NETWAIT call occurs. You should not issue a call
to NETWAIT when it would interrupt parallel mode
operation, unless a call to NETCHEK first returns
an indication that all worklist processing is
completed.

You should include NETWAIT calls in an application
program that repeatedly polls the network for input
(Via NETGET, NETGETL, NETGETF, or NETGTFL calls).
If such programs omit frequent NETWAIT calls,
severe performance degradation can result; if you
perform on-line debugging of such application
programs, you should use small time limits for the
job while It is in the debugging phase.

You should use NETWAIT calls as part of the appli-
cation program's mechanisms to control queuing.
For example, the application program must be sure
before each NETPUT or NETPUTF call that the call
will not cause the logical connection's application
block limit to be exceeded. When the limit has
been reached, the application program should not
output another block until it has received a block-
delivered supervisory message for a block already
sent. Because repeated polling for supervisory
message input to obtain these acknowledgments can
degrade program performance, a NETWAIT call should
follow any NETPUT or NETPUTF call that might cause
the limit to be reached. The time value declared
in the NETWAIT call should be large enough to allow
a block-delivered supervisory message to be received
before another NETPUT or NETPUTF call occurs.

Similarly, an application program should never
enter parallel mode after a NETPUT call unless the
program first issues a NETWAIT call. Because AIP
does not transfer worklists partially filled by
NETPUT calls, the NETWAIT call is necessary to
force transfer of the worklist. (See Worklist
Processing in section 4.) If NETWAIT is not called,
the time between the NETSETP call and the first
NETCHEK call is not used for network processing.

| Figure 5-21 contains examples of NETWAIT statement
use. The program sends a series of data message

'

blocks with NETPUT calls, issues a NETWAIT that
transfers the worklist and begins block trans-
mission, and then checks the supervisory status
word (NSUP). If no asynchronous supervisory mes-
sages are queued on return from the first NETWAIT

MSK1=0"02000000000000000000"

•
CALL NETPUT (HA,TA,TLMAX)
ITI"E=1

IFLAG=1
CALL NETWAIT(ITI"E,IFLAG)
IF(NSUP.AND.MSK1.EQ.MSK1) GO TO 1

ITME=10
IFLAG=0
CALL NETWAIT(ITINE,IFLAG)

1 IACN=0
CALL NETGET (IACN,HA,TA,TLMAX)
CALL SNP(HA,TA,TLMAX)

•

Figure 5-21. NETWAIT Statement
FORTRAN 5 Examples

call, no block-delivered message can have been
received and the NSUP test fails. The program
issues a second NETWAIT call specifying delay until
input on any connection (including the asynchronous
supervisory message connection 0) is queued.

CONTROLLING PARALLEL MODE (NETSETP)

The NETSETP statement (figure 5-22) begins or ends |
an application program's parallel mode operation.
Parallel mode operation involves worklist process-
ing and is discussed in detail under both headings
in section 5. While in parallel mode, an appli-
cation program cannot use any AIP statements other
than NETOFF or NETCHEK until AIP processing com-
pletion has been indicated in the supervisory status
word.

CALL NETSETP (opt ion)

option An input parameter, specifying whether
parallel mode operation begins or ends
after the NETSETP call. This parameter
can have the values:

=0 Begin parallel mode operation.

#0 End parallel mode operation.
(This is the default value for
application program operation.)

Figure 5-22. NETSETP Statement
FORTRAN Call Format

The supervisory status word used during parallel
mode operation is defined by the nsup parameter in
the application program's NETON statement. The bit
of the supervisory status word concerned with
parallel mode processing is updated only while an
application program is operating in parallel mode.

When an application program is operating in parallel
mode, it should not alter the contents of the text
area used for a NETPUT or NETPUTF call immediately
after that call. The program can normally reuse

60499500 R 5-15

the area as soon as a call to NETWAIT, NETGET,
NETGETF, NETGETL, or NETGTFL is completed. The
text area used in a NETPUT or NETPUTF call should

not be altered until after worklist processing is

reported complete; nor should the NETON call status

word be tested until then.

A call to NETSETP ending parallel mode operation

should not be issued until a call to NETCHEK returns

an indication that all worklist processing is com-
pleted. AIP ignores calls to NETSETP that attempt
to end parallel mode operation if the application
program is not operating in parallel mode.

| Figure 5-23 contains examples of NETSETP and NETCHEK
use. The program attempts to reduce the number of

worklist transfers between AIP and NIP to increase
its efficiency. It does this while servicing a

batch device on application connection number 2 and

| transmitting to a console on application connection
number 3.

The program flow shown minimizes worklist transfers
by concentrating the console output, instead of |
interleaving each output line with NETGET calls
that might cause worklist transfers by AIP for
worklists not completely filled. Parallel mode
does' not expedite this efficiency, but requirements
for its use are illustrated in several parts of the
code.

When the program has sent downline all of the
blocks it intends to send to the console, it tests
for upline data or asynchronous supervisory mes-
sages. If neither is found, NETWAIT rolls the
program out for 7 seconds and suspends parallel
mode processing temporarily.

When asynchronous supervisory messages are found,
the program leaves parallel mode processing with a

nonzero IOPT parameter in another NETSETP call.
The program can then fetch the messages without
needing to test NSUP for completion of the NETGET

call.

•
•

ITLMAX=410
IIACN=3
IBACN=2
I0PT=0
CALL NETSETP (IOPT)

10 DO 99, I = 1, 5, 1

CALL NSTORE (I IHA (I) ,L"ABHADR" ,IIACN)
CALL NSTORE CIIHAU),L"ABHABN", I)

CALL NETPUT (IIHA(I), ITEXTC20*(I-1)))

88 ITEMP=NSUP.AND. SHIFT (1, 59)
IF(ITEHP.Ea.SHIFT(1, 59)) GO TO 99
CALL NETCHEK
GO TO 88

99 CONTINUE
98 ITEMP=NSUP. AND. SHIFT (1, 55)

IF(ITE"P.EQ.SHIFT(1, 55)) GO TO 3

ITEMP=NSUP. AND. SHIFT (1, 56)

IFUTEMP.EQ.SHIFTO, 56)) GO TO 4

ITIHE=7
IFLAG=1
CALL NETWAIT (ITI»E,IFLAG)
GO TO 98

3 IACN=0
I0PT=1

CALL NETSETP(IOPT)
CALL NETGET (IACN, IHA, ITA, ITLNAX)

•

4

•
I0PT=0
CALL NETSETP (IOPT)
CALL NETGETUIACN, IIHAd), ITEXTO), ITLMAX)

5 CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)

IF(ITE"P.NE.SHIFT(1, 59)) GO TO 5

•

6

•
CALL NETCHEK
ITE«P=NSUP.AND.SHIFT(1, 59)

IF(ITEMP.NE.SHIFT(1, 59)) GO TO 6

•
•

GO TO 10

Figure 5-23. NETSETP and NETCHEK Statement

FORTRAN 5 Examples

When upline data is found, the program makes sure

it is in parallel mode with a zero IOPT parameter
in a NETSETP call. This call is ignored if it is

reached by a path that had already caused parallel

mode processing to begin. While in parallel mode,
the program fetches any queued input from the con-
sole. NETCHEK is called and tested for completion
after the NETGET call. After the attempt to fetch
data from the console is completed (the input dis-
posed of by code is not shown), a similar attempt
(not shown) is made to fetch data from the batch
device. When any batch data has been disposed of,

the program returns to its output loop for the

console (having presumably prepared the output
buffers first).

If a system control point job is operating in

parallel mode when it loses communication with NIP,

all further network input and ouput AIP calls are
ignored, but the program is not aborted. The
program should check the n bit in the supervisory
status word (see figure 5-2) after completion of

all network input and output calls to determine
whether or not it is still communicating with NIP.

If a system control point job is not operating in

parallel mode when it loses communication with NIP,

it is aborted when it makes the next AIP request.
The operating system aborts all nonsystem control
point jobs when NIP aborts, regardless of operating
mode.

CHECKING COMPLETION OF WORKLIST
PROCESSING (NETCHEK)

The application program uses the NETCHEK statement
(figure 5-24) to perform several functions. Each |
call to NETCHEK:

Updates bit 59 of the supervisory status word
(identified by the nsup parameter used in the

NETON statement) on return from the call, when
the program is in parallel mode

Forces AIP to attempt transfer of its current
worklist to NIP if the transfer has not yet
occurred, if the program is running in either
parallel or nonparallel mode

5-16 60499500 R

CALL NETCHEK

Figure 5-24. NETCHEK Statement
FORTRAN Call Format

It is not necessary to call NETCHEK to cause work-

list transfers. Worklist transfers occur normally
after all the requirements described in section 4

under Worklist Processing have been met. A NETCHEK

call causes an attempt to transfer a worklist in

situations that do not meet these criteria. This

operation is equivalent to a NETWAIT except that

processing is not suspended.

worklist processing operation is pending. A call
to NETSETP ending parallel mode operation should
not be issued until a call to NETCHEK returns an

indication that all worklist processing has been
completed.

If NETON is called during parallel mode operation,
NETCHEK should not be called until all worklist
processing is reported complete. The NETON call
status word does not contain meaningful information
until processing for the worklist containing the
NETON call is complete. NETCHEK should not be
called after a NETOFF call is issued in parallel
mode. A NETOFF call ends parallel mode operation
by making worklist processing completion status
impossible.

By checking the supervisory status word after each
NETCHEK call, the application program can determine
the most recent state of worklist processing and

determine whether additional AIP routine calls can
be issued. NETCHEK, NETOFF, and NETWAIT are the

only AIP statements that can be used while any

Worklist processing is described in section 4. The
supervisory status word is described under the
heading Connecting to Network at the beginning of
this section. Figure 5-23 contains examples of |
NETCHEK use.

60499500 R 5-17

CHARACTERISTICS OF AN APPLICATION PROGRAM

This section describes the structure and execution
of a Network Access Method (NAM) application pro-
gram.

NOTE

You cannot execute application pro-
grams as Transaction Facility tasks.

NOS SYSTEM CONTROL POINT
| FACILITY

The NOS system control point facility permits the
exchange of data between programs running at dif-
ferent control points. These programs are called:

System control point jobs when they are formally
defined as subsystems of the operating system

User control point jobs when they exchange data
with a system control point job

System control point jobs (subsystems) can make
privileged requests to the operating system and
execute with a very high priority. Network system
control point jobs such as the Network Interface
Program (NIP) usually reside in the operating system
library.

Application programs accessing the network execute
as system control point jobs or user control point
jobs using the system control point facility. Since
the code that implements this facility is embedded
in the Application Interface Program (AIP), it
remains transparent to the application program.
Certain aspects of system control point jobs and
user control point jobs, however, do affect appli-
cation program operation.

An application program cannot execute successfully
unless the CUCP bit is set in the access word
associated with the user name of its job. If the
program attempts to access the network and the CUCP
bit is not set, the program is aborted with the
dayfile messages ILLEGAL USER ACCESS and SYSTEM
ABORT, and no error exit processing occurs. Access
word bits are set through the MODVAL utility, as
described in the NOS System Maintenance reference
manual

.

While connection to the network exists, a network
application program always has a minimum system
activity count of one. If the application program
uses the control point manager system macro call
(GETACT) , the minimum system activity count appears
in the SCA field of the call. When a network
application program ends Its connection with the
network by a NETOFF call, the system activity count

| drops to zero. The GETACT macro is described in
volume 4 of the NOS reference set.

BATCH JOB STRUCTURE |

A batch application program job using the Network
Access Method is structured like any other batch
job.

A job is a sequence of commands, optionally followed
by source programs, object programs, data, or
directives. A batch job begins with the job command
and ends with an end-of-information indicator. Jobs
can consist of either physical card decks or images
of card decks.

Application program jobs can enter the system in one
of two ways

:

Batch jobs on cards are read in through card
readers at the central site. Batch jobs of

card images are read from a load tape under the
direction of the system console operator or the
direction of another job.

Remote batch jobs on cards are read in through
card readers at remote site terminals. Remote
batch job card images are transmitted to form a
file at the host computer. All remote batch
jobs reach the host computer facilities through
the Remote Batch Facility (RBF).

Batch jobs have the same structure no matter what
their origin. Remote batch jobs differ from central
site batch jobs in that output returns to the
terminal and that remote jobs are subject to the
limitations of the physical equipment at the remote
site. The following information about job decks
applies to both card decks and card deck images.

The first card of the batch job deck is the job
command; the last card has a 6/7/8/9 multiple punch
in column 1. Cards with a 7/8/9 or 6/7/9 multiple
punch in column 1 divide the deck into a command
portion, program portion, and optional data portion.
When a job deck is created as card images from a
time-sharing terminal, the cEOR and cEOF entries
result in the logical equivalent of 7/8/9 and 6/7/9,
respectively. If the job deck is submitted ' from a
HASP or bisynchronous station through the Remote
Batch Facility, the /*EORnn and /*EOI cards result
in the logical equivalent of 7/8/9 and 6/7/8/9,
respectively. HASP or bisynchronous station card
readers and card punches support 7/8/9 cards but
not 6/7/8/9 cards; 200 User Terminal card readers
do not recognize either /*E0Rnn cards or /*E0I
cards.

Jobs in the system waiting to begin execution are
collectively known as the input queue. Each job
enters the system with the user job name specified |
by the first command in the job deck. The operating
system changes this name, based on the job command
present, to distinguish it from all others in the
system.

60499500 R 6-1

Once a job enters central memory and begins execu-
tion, the image of the job deck is known as a file
by the name of INPUT. During job execution, a file

with the name of OUTPUT is generated. When the job
completes execution, file OUTPUT becomes part of

the output queue. The output queue is the collec-
tive name for output files remaining in the system
when the jobs that generated them have completed
execution. As printers, punches, or remote devices
become ready, the operating system or remote batch
software causes files from the output queue to be
physically output. Such files normally return to
the user with the system-generated name of the job
that created them.

COMMANDS

Commands are instructions to the operating system
or its loader. They are grouped together at the
beginning of a deck. Collectively, the commands
form a job stream.

Commands execute in the order in which they appear
in the job stream, unless that order is modified by
the operating system control language. Conse-
quently, the order of the commands governs the order
of other sections in the deck.

The user is responsible for structuring the job
decks so that each command read from file INPUT

corresponds correctly with the sections of the job
deck. The operating system handles each section of
the job deck only once, unless the job specifies
contrary handling.

The job command portion of an application program
job deck normally contains a USER command as its
second card. (See figure 6-1.) The user name
specified in this command must have bit 11 (CUCP)
of its corresponding access word set, so that the
application program can successfully complete calls
to system control points. The NOS System Mainte-
nance reference manual describes the mechanism for
setting access word bits. Some installations
require a CHARGE command following the user command. |

Until the program is successfully compiled, the only
other required command is a compiler or assembler
execution command in the form described in the
appropriate reference manual for the product being
used. Figure 6-1 illustrates the use of the com-
piler execution command for FORTRAN 5. If the job
uses a compiler, a LIBRARY or LDSET command is
needed to satisfy externals from local libraries
NETIO or NETIOD. If the job uses COMPASS, the
COMPASS command must declare NETTEXT to satisfy AIP
externals and to define the symbolic names used for I
the field access macro utilities NFETCH and NSTORE.
(See section 4.)

End-of-lnformation Card

Separator Card

Data Statements

Separator Card

Program Statements,

Including AIP Calls

Separator Card

Commands,
Including a Compiler

or Assembler Call

Job Command

/ 6

Id 7

»tt
/

r

r
/

/
8
9

r
/

/

A

<
8

f^LGO.

I / LDSET(LIB=NETIOD)

/
f
FTN5(L0=S/-A)

/cHARGE(0059,2934657)

/ USE R (APPL1 ,PASS,FAM1

)

/ RMV3.

Figure 6-1. Typical Job Structure for System Input

6-2 60499500 R

JOB IDENTIFICATION PROGRAM CONTENT
The network software identifies an application
program and issues dayfile messages concerning the
program on the basis of the aname parameter used in
the program's NETON call. The operating system,
however, is unaware of this name and issues dayfile
messages on the basis of the job name assigned to
the program according to the contents of the job's
command portion. To ensure that all dayfile mes-
sages concerning the application program can be
identified, you should take the following steps when
the program is run as a batch job:

Determine the method NOS will use to assign a
job name to the application program.

If the job contains commands to reprieve itself from
an abort (RERUN or RESTART), the program portion of

the job must issue a NETOFF and a new NETON call in
order to continue accessing the network through NAM.

When an application program is structured to use
overlays, the common blocks used by all AIP routines
must reside in the main (zero-level) overlay. The
operating system loader places the blocks in the
main overlay only if the application program makes
at least one call to an AIP routine other than
NETCHEK in the main overlay. At a minimum, the
NETON call must therefore be placed in the main
overlay of the program.

Determine the first four characters of that
name.

Inform the host operator of the first characters
of the job name corresponding to the application
name.

Do not thereafter alter the portion of the job
commands that determines the job name.

Alternatively, you can use the NOS control point
manager macro GETJN to determine the job name
assigned to the application program job during each
execution. For the host operator's information,
this name can then be entered in the system dayfile
with a message indicating its application program
name equivalent. This operation can be performed
with the NOS system macro MESSAGE. GETJN and
MESSAGE are described in volume 4 of the NOS 2
reference set.

PROGRAM EXECUTION THROUGH IAF

Your application program can be executed from the
Interactive Facility in several ways: |

- As a SUBMIT command file batch job

- As a ROUTE command file batch job

- As an interactive job

- As a detached interactive job (so your
terminal can log in to it)

The use of SUBMIT and ROUTE is described in volume
3 of the NOS reference set. SUBMIT and ROUTE
command file jobs have the same command content
requirements as other batch jobs.

Figure 6-2 shows the procedure for interactive
execution of the sample program RMV2 (chapter 8).
Detached interactive job programs have the same
program content requirements as batch job programs.

Your entries are underlined:

/ attach,rmv -*-

/ftn5,i=rmv,lo=0,b=zap -*-

0.479 CP SECONDS COMPILATION TIME.
/ Id set (I i b=net i od -*—————————

—

LbR :>? zap ZZ=
ESCe—

JSN: AAYS SYSTEM: BATCH SRU:
STATUS: NAM VER 1.5- 2D
ESCd-

4.889

•Attach direct access source file
• Compile it

Load it
Execute it

Bypass the IAF input queue to find out if the job step
was successful

Detach the running (rolled out) application progra

JOB DETACHED, JSN=AAYS
JSN: AAZB, NAMIAF

RECOVERABLE JOB(S)

JSN UJN STATUS

AAYS AANY EXECUTING

TIMEOUT

Figure 6-2. Interactive Program Execution Procedure Example (Sheet 1 of 2)

60499500 S 6-3

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: 30 -

/bye,rmv2 —
UN=XXXXXXX LOG OFF 12.07.08.
JSN=AAZB SRU-S 2.003
IAF CONNECT TIME 00.04.01.

RMV2 VER 3
INPUT PLSSHUTD -.

RNV2 CONNECT TINE 00.00.08.

JSN: AAZC, NANIAF-.

RECOVERABLE JOB(S)

JSN UJN STATUS TIMEOUT

AAYS AANY SCP ROLLED

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: aays

SRU:JSN: AAYS SYSTEM: BATCH
STATUS:
CHARACTER SET: NORMAL NODES: PROMPT ON
JOB IN SYSTEM. ENTER GO TO CONTINUE.

go -«

ACSR, 1.000UNTS.
/enquire,f -*

0.034

LOCAL FILE INFORMATION.

FILENAME LENGTH/PRUS TYPE STATUS

INPUT*

INPUT
OUTPUT
ZZZZZDN
SUBFILE
RNV
ZAP
ZZZZZSN

TOTAL * 8

FS

1 IN.* BOI

LO.

LO.
3 LO. EOR WRITE
1 LO. BOI

34 PM.* EOR
32 LO. EOF
2 LO. EOR WRITE

• Startup a new job so you can switch applications

Use an IAF application switch command

Respond to RMV2 prompt with command that shuts it down

Connection switch back to IAF is automatic

-Recover the detached application program (has called
NETOFF, so this rollout is controlled by IAF)

Roll it back in

•Here are all the files NETIOD should create

Figure 6-2. Interactive Program Execution Procedure Example (Sheet 2 of 2)

TYPES OF APPLICATION
PROGRAMS
All application programs should be specified in
COMTNAP. When an application is defined also in
the local configuration file it can be declared as
having one of the following attributes:

Disabled
Unique identifier
Privileged
Request startable
Have more than one copy on any one host

Access to an application program can also be con-
trolled. A program can be:

A restricted access or general access appli-
cation program

A mandatory or primary application program

These access types are separately established for
each connection with the program. The first type
is controlled through the user name associated with
the connection. The second type is controlled
through the terminal device name associated with
the connection.

6-4 60499500 S

DISABLED

A disabled application is configured in the network
but is not allowed to access the network until the
host operator enters an enable command to allow it
to be connected.

UNIQUE IDENTIFIER

A unique identifier application program requires
that interactive console user access to it be
restricted on the basis of the login parameters
used. Only one interactive console with a given
combination of family name and user name index can
be connected with a unique identifier application.
NVF rejects a terminal user's request to be con-
nected with a unique identifier application if the
user logs in with a family name and user name index
combination used by a console that is already con-
nected with the application. NVF tells the terminal
user to try again later.

As an example, the Remote Batch Facility (RBF)
routes its output files on the basis of the family
and user names used when the terminal console logs
in. So that output will not be misrouted, RBF is
normally configured as a unique identifier appli-
cation program. Thus the family name and user name
index combinations of all consoles accessing the
program are guaranteed to be unique.

PRIVILEGED

Privileged application programs must have an SSJ=
entry point to access the network successfully.
They also often have the CSOJ bit set in the access
word associated with the user name for the job
executing the program code.

The CSOJ bit provides the program with system
origin type permission. Jobs with system origin
type permission can be executed by host operator
type-in. Such jobs usually reside under the
operating system user name in the operating system
permanent file catalog or are installed in the
operating system library.

Having system origin type permission does not mean
that these programs must have a system origin type
when executed; rather, a privileged application
program is capable of such execution.

Nonprivileged application programs can have any
origin type permission but do not contain an SSJ=
entry point. Origin type permission for such
programs does not affect access to the network.

The primary reason for defining an application
program as privileged is to help ensure network
security. Nonprivileged application progams cannot
run with the application program name used for a
privileged application, even if the privileged
application program is not currently running.

Application programs usually become privileged when
they are installed in the system. An installed
application program is one that resides in the
operating system library. The procedure file used
to execute an installed application program must
have the CASF bit set in the access word associated
with the user name in the file. Jobs that attempt

to access installed application programs must also
have the CASF bit set in the access words associated
with their user names. This bit must be set for
access to the system library.

If a privileged application program with the CSOJ
bit set has not been installed in the system
library, it can be executed by a host operator
type-in that invokes its procedure file. The type-
in used has the form:

X.BEGIN(,anamep)

where the anamep parameter is the name of the
procedure file. The procedure file must be a

permanent file in the operating system permanent
file catalog (stored under the system user name and
user index). For the anamep value, you can use a
variant of either the program entry point name or
the program network application name (NETON state-
ment aname parameter), and all three identifiers
should be coordinated. CDC-written application
programs are invoked through procedure files for
which certain naming conventions have been adopted.
These conventions appear in the NOS Installation
Handbook, described in the preface. Similar
conventions could be adopted for site-written
application programs.

An installed privileged application program with
the CSOJ bit set can be executed by a host operator
type-in of the form:

X.anament

.

where the anament parameter is the name of the
program (first entry point) installed in the
library. For the anament value, you can use a
variant of the program network application name
(NETON statement aname parameter)

.

A privileged application program with the CSOJ bit
set that is not installed can be executed by a
system console operator type-in that invokes an
installed procedure file. This type-in has the
form:

X. anamep

.

where the anamep parameter is the name of the
procedure file installed in the system library.
For the anamep value you can use a variant of
either the program entry point or the program
network application name (NETON statement aname
parameter), and all three identifiers should be
coordinated. As described previously, the naming
conventions used by CDC for CDC-written application
programs should be used as a guide for procedure
files invoking site-written application programs

.

Privileged application programs with the CSOJ bit
set can be automatically started when the host's
network software is started. This process is
described in the NOS Administration reference |
manual

.

You should not define an application program as
privileged or install it in the system library
until the program has been thoroughly debugged.
Programs, should be run with batch, remote batch, or
detached interactive job origin during the
debugging process

.

60499500 S 6-5

REQUEST STARTABLE

Whenever the application is requested by a terminal
user (through the application name in the login
process) , or by another application (by a CON/ACRQ
message) , NVF attempts to start the application.

The file name equivalent to the name of the appli-
cation should be made available to NVF through the
NVF startup record. (See the NOS Installation
Handbook .

)

HAVE MORE THAN ONE COPY
(ON ANY ONE HOST)

More than one copy of an application program is
allowed to be simultaneously connected to the net-
work, if so specified in the local configuration
file. If such an application is also request
startable, then NVF will start up a new copy of an
application whenever a connection request for the
application comes into the host, and all existing
copies already have their maximum number of
connections

.

dependencies are discussed later in this section;
these dependencies are primarily requirements for

proper configuration of the program and the ter-
minals it services.

FATAL ERRORS

Portions of the Network Access Method
diagnostic messages for all fatal errors,
messages are described in appendix B.

issue
These

The form used for AIP and QTRM diagnostics depends
on the library used to load the routines used during
execution. When NETIO is used in the LIBRARY or
LDSET command, a single diagnostic message with a

reason code is written to the program dayfile before
the program is aborted by a fatal error. When
NETIOD is used, the same diagnostic is issued, but
supplementary diagnostics can also be issued before
the program aborts.

DEBUGGING METHODS

RESTRICTED OR GENERAL ACCESS

Each user name in the host can be validated to
connect to one or any application in the network.
This validation is done through MODVAL, which is
described in the NOS Administration reference
manual

.

MANDATORY OR PRIMARY

In the local configuration file, each terminal
console can be designated to have a mandatory or a
primary application assigned to it. If the appli-
cation is mandatory, the terminal cannot be logged
into any other application regardless of the user
name entered. If the application is primary, the
terminal will automatically be connected to the
application on the initial login unless an alternate
application name is entered during the login. For
subsequent connections, the network will prompt for
an application and, if a carriage return is entered,
the network will connect the terminal to the primary
application.

DEBUGGING APPLICATION
PROGRAMS
Application program job content partially depends
on the purpose of the job's execution. If the job
is executed for debugging purposes , the debugging
method chosen for the program can affect the param-
eters specified in the job's LDSET or LIBRARY
command and thereby affect the AIP code executed at
the program's control point. This aspect of execu-
tion is discussed in the next subsection.

Successful execution of an application program
depends on several conditions beyond the scope of
the program's code. The less obvious of these

Two methods are available for debugging the con-
nection servicing logic of an application program:

Supervisory and/or data message flow through
the program can be traced by optional AIP code;
this code creates a log file of such messages.

Statistical information on program execution
can be gathered for performance adjustment by
optional AIP code; this code creates a statis-
tics file of the program's network use.

Debug Log File and Associated Utilities

The optional AIP code that creates the log file
gives an application program a means of recording
all exchanges between the program and the network.
The AIP utility routine NETDBG gives the program a
method of selecting exchanges that should be
recorded. A running count of the number of mes-
sages copied to the debug log file is kept in the
supervisory status word (NETON nsup parameter).
This count enables the application to decide when
to call the AIP utility routine NETREL, which gives
an application program a way of releasing, saving,

or processing the current information in the debug
log file. The AIP utility routine NETSETF gives an
application program a way of requesting the opera-
ting system to flush the input/output buffer for the
debug log file automatically, if the application
terminates abnormally. The AIP utility routine
NETLOG allows the application to enter messages into
the debug log file.

Whether or not the log file is created depends on
the system library used to satisfy the application
program's externals. AIP code for the program can
be loaded from either NETIO or (if the installation
elects to install it) from NETIOD. When NETIOD is
used, all code needed to create the log file is
loaded; the options for logging both supervisory
messages and network data blocks are automatically

6-6 60499500 S

turned on initially. Because this code causes
additional processing overhead and central memory
requirements for the application program' s control
point, you might Want to remove the code after the
program is completely debugged. You can remove the

code from the job without altering the application
program's structure by loading the AIP code from
NETIO instead of NETIOD. When NETIO is used, the

only parts of the log file code loaded are
do-nothing versions of NETDBG, NETLOG, NETREL, and
NETSETF.

NETDBG Utility

When NETIOD is used, the log file is automatically
created without application program calls. You can
use calls to NETDBG to switch either or both options
for message logging off and back on throughout the
program.

NETDBG calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and

| 5.) Figure 6-3 shows the NETDBG utility FORTRAN
call statement format. NETDBG can only be called
after NETON is called and before NETOFF is called.

Calls to NETDBG can occur in programs using either
NETIO or NETIOD. For example, when a NETDBG call

I

turns either or both supervisory message and net-
work data block logging on and a status is returned
indicating logging is not possible, no error occurs
and the option selection is ignored. When the

program contains a NETDBG call before NETON to turn
both logging options off and a status is returned
indicating logging is possible, a log file is still

created to contain a record of the program's NETON,
NETDBG, and NETOFF calls.

NETREL Utility

Log file creation begins when the application
program successfully completes its NETON call and
ends when NETOFF is issued. If the application has
not called NETSETF previously and the program
fails, the output buffer used for the log file is

not completely emptied into the file. In such a
case, the application should reprieve itself and
issue a NETOFF call, or a NETREL call, to flush the
input/output buffer.

NETREL calls use the same syntax and calling

sequences as other AIP calls. (See sections 4 and

| 5.) Figure 6-4 shows the NETREL utility FORTRAN
call statement format. To use the NETREL utility,

an application must issue an initialization call to
NETREL with a nonzero first parameter. This call
must be issued before NETON and any NETSETF call in

order to set up the ZZZZZDN file correctly.

The first parameter on the NETREL call is the name
of a file containing a job command record. If the

file name supplied does not conform to the NOS
operating system file name format, NOS aborts the
job when AIP attempts to do input/output on the

file. NETREL reads up to 192 central memory words
of the named file, or until a logical end-of-record
is encountered.

CALL NETDBG (dbugsup, dbugdat, avail)

dbugsup An input parameter that turns the
logging of supervisory messages on or
off. This parameter can have the
values:

=0 Turn supervisory message
logging on.

*0 Turn supervisory message
logging off.

When supervisory message logging is
turned on, all supervisory messages
(except block-delivered messages)
exchanged on connection between the
application program and NAN are log-
ged. Logging occurs whenever a call
to NETGET, NETGETL, NETGETF, NETGTFL,
NETPUT, or NETPUTF causes a message
transfer. This logging continues
until a call with a nonzero debug sup
parameter is issued.

dbugdat An input parameter that turns the
logging of data messages on or off.
This parameter can have the values:

=0 Turn network data block
logging on.

*0 Turn network data block
logging off.

When network data block logging is

turned on, all network data blocks
exchanged on any connection between
the application program and NAN are
logged; block-delivered supervisory
messages (FC/ACK/R) are also logged,
regard less of the value specified
for the dbugsup parameter. Logging
occurs whenever a call to NETGET,
NETGETL, NETGETF, NETGTFL, NETPUT,
or NETPUTF causes a block transfer.
This logging continues until a call
with a nonzero dbugdat parameter is

issued.

avail A return parameter that indicates
whether the logging code portion of
AIP was loaded when the program was
loaded. On return from the call,
this parameter can have the values:

=0 Loading occurred from NETIOD
and logging is possible.

=1 Loading occurred from NETIO
and logging is not possible.

When a value of 1 is returned, speci-
fication of for either dbugsup or
dbugdat has had no effect but does
not cause an error.

The second parameter on the NETREL call gives the

maximum number of words in each message to be saved
in the ZZZZZDN file.

Figure 6-3. NETDBG Utility FORTRAN Call
Statement Format

60499500 R 6-7

CALL NETREL(lfn,msglth,nrewind)

Lfn

msglth

nrewind

An input parameter that names the

file containing the job record to be

copied to the ZZZZZDN file. This
parameter can have the values:

=0 The application program job
provides its own disposition
of the file ZZZZZDN. Only

the msglth parameter is proc-
essed by AIP.

=*0 The named file contains a job
record to dispose of the file
ZZZZZDN. The value declared
for lfn must be left-justified
with zero fill, and can be one
to seven alphabetic or numeric
characters in any combination
permitted by the NOS operat-
ing system file name format.

An input parameter that gives the

maximum number of words of each mes-
sage to be saved on the ZZZZZDN file;
0<msglth<410. The value is ignored
if msglth 1s 0.

An input parameter that controls
whether AIP rewinds the job command
record f i le before the NETREL oper-
ation begins. This parameter can
have the values:

=0 File lfn is rewound before
any operation is performed.

#0 File lfn is not rewound be-
fore any operation is per-
formed.

If the value declared for lfn is zero,
a value of zero for the rewind para-
meter is ignored.

If NETREL is not called and the application is
loaded with NETIOD, the debug log file exists as a
local file assigned to the application job. The
debug log file does not begin with a job command
record; therefore, at job termination it should be
treated (disposed of) as a normal local file.

NETSETF Utility

NETSETF calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-5 shows the NETSETF utility FORTRAN |
call statement format. NETSETF allows the input/
output buffer for the debug log file ZZZZZDN to be
flushed automatically, if the application terminates
abnormally. If the error flag code is greater than
23 octal (the COMPASS EREXIT mnemonic SPET), then |
the debug log file is not flushed. See volume 4 of
the NOS reference set for a list of the values for
the error flag code. Flushing sets the flush bit
in the file environment table (FET) for the debug
log file and calls the NOS macro SETLOF.

Figure 6-4. NETREL Utility FORTRAN Call
Statement Format

CALL NETSETF (flush, fetadr)

flush An input parameter that flushes the
debug log file automatically upon
abnormal termination. The flush
parameter can have the following
values:

=0 the flush bit is set in the
FET and the FET address of
the debug log file is re-
turned in fetadr.

*0 the flush bit is set in the
FET and the SETLOF macro is

called. The FET address is

not returned.

fetadr A return parameter that is the FET
address of the debug log f i le re-
turned by NAN. If zero, either the
flush parameter was nonzero or NETIO
was loaded (in which case the flush
parameter makes no difference).

The third parameter in the NETREL call determines
the position at which NETREL begins reading the
named file. The file can be rewound to the
beginning-of-information before reading begins, or
it can be read from its current position.

After copying the job command record file to the
debug log file, AIP writes an end-of-record level
to the debug log file before beginning to log mes-

| sages. Each call to NETREL zeros the MC field in
the supervisory status word (NETON nsup parameter)

.

Subsequent calls to NETREL route ZZZZZDN to the
input queue, reinitialize the file environment

| table and MC field in the supervisory status word,

and copy another job command record to a new
ZZZZZDN file.

Figure 6-5. NETSETF Utility FORTRAN Call |
Statement Format

The SETLOF macro provides NOS with a list of files |
and FET addresses to be flushed on abnormal ter-
mination. The SETLOF macro can be called more than
once; each successive call overrides the previous
call with a new list of files.

Applications written in FORTRAN or COBOL should not
call NETSETF, because those compilers use CYBER
Record Manager, and CYBER Record Manager also calls
the NOS macro SETLOF. If you want the application
to call the SETLOF macro and include the debug log
file in the SETLOF macro list, the application can
first call NETSETF to get the FET address of the

6-8 60499500 R

debug log file. If NETSETF Is not called and you
want an application to flush the debug log file on
abnormal termination, then the program must
reprieve itself and call NETOFF or NETREL. NETSETF
needs to be called only once and should be called
before NETON is called. NETREL does not clear the
flush bit in the FET when it reinitializes the FET.

NETLOG Utility

NETLOG calls use the same syntax and' calling
sequences as other AIF calls. (See sections 4 and
5.) Figure 6-6 shows the NETLOG utility FORTRAN
call statement format. NETLOG allows an application
to enter messages into the debug log file. These
messages can be of any size, but large messages
degrade the performance of AIP. Messages are copied
to the debug log file unchanged. However, they are
truncated if the NETREL utility has previously been
called and if the message length exceeds the number
of central memory words specified as the maximum
message length in the NETREL call. The messages
can be either formatted or unformatted.

CALL NETLOG (address,si ze,format)

address An input parameter that gives the
address of the message to be written
to the debug log file.

size An input parameter that gives the
size in central memory words of the
message to be written to the debug
log file.

format An input parameter that determines
whether the message is formatted or

unformatted. This parameter can have
the values:

=0 The message is unformatted
and will be printed by DLFP
in octal, hexadecimal, 6-bit
display code characters, and
ASCII characters.

=1 The message is formatted and
will be printed unchanged by
DLFP.

NETDMB Utility

NETEMB calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-7 shows the NETDMB utility FORTRAN |
call statement format. NETDMB allows an application
to dump its exchange package and central memory
field length into the local dump file ZZZZDMB. The
data is in binary format. The file ZZZZDMB must be
postprocessed by a binary dump interpreter to allow
selection of address range and formatting for print.
The dump formatting is done through DSDI, which is
described in the NOS 2 System Maintenance reference
manual. A logical end-of-record is written to the
file ZZZZDMB after each NETDMB call.

CALL NETDMB (dumpid,ecs>

dumpid An input parameter that is an octal
6-digit dump identifier number. The
dumpid parameter can have the values

< dumpid £ 777777.

ecs An input parameter that determines
whether the associated extended
central storage is also dumped. This
parameter can have the values:

=0 Do not dump extended central
storage

*0 Dump the associated extended
central storage

Figure 6-6. NETLOG Utility FORTRAN Call
Statement Format

Figure 6-7. NETDMB Utility FORTRAN Call
Statement Format

Debug Log File Postprocessor Utility

The debug log file is a binary compressed file; it

is written using NOS data transfer macros. You can
obtain a listing of this file by running the debug
log file postprocessor utility with the desired
options

.

The debug log file postprocessor (DLFP) utility is
a program that processes the debug log file genera-
ted by AIP. The general format of the DLFP command
is shown in figure 6-8. Examples of DLFP commands
are shown in figure 6-9.

Formatted messages are stored as 6-bit display code
characters with zero byte terminators. The first
character of the message is used as a carriage
control character for the line and is not printed.
Formatted messages longer than 136 characters
should be stored as separate zero-byte-terminated
lines.

The debug log file postprocessor automatically
rewinds the debug log file before postprocessing
begins . The application programmer needs to rewind
the file only when DLFP is not the first software
to access the file after program execution com-
pletes .

DLFP prints formatted messages unchanged. DLFP"
prints unformatted messages the same way it prints
network message text (in octal, hexadecimal, display
code, and ASCII characters).

NETLOG cannot be called before NETON.

The debug log file can be copied, made permanent,
or otherwise accessed before DLFP begins its post-
processing. Such operations, however, must not
alter the form of the file used for DLFP input.
You cannot copy portions of the file and success-
fully run DLFP using the incomplete copy.

60499500 R 6-9

The job commanc format for DLP is:

OLFP (p-| ,P2*P3*P4/P5}

P^ is any of
order:

the following parameters in any

l=lfni Directives comprise the next
record on f i le lfn-| .

1=0 No directive input.

L omitted Directives on file INPUT.

L=lfn2 List output on file Ifnj.

L omitted List output on file OUTPUT.

B=Lfn3 Fi le Ifrtx contains the debug log

file.

B omitted Debug log file is ZZZZZDN.

D Discontinue processing current
directive record if there are

errors in it. Restart with next
directive record if any.

D omitted Do not ignore directive errors;
abort job.

N=lfn4 Create new debug log file Lfn4
with records selected from lfr>3

or ZZZZZDN according to direc-
tives governing record selection
for the list output file. If

this option selected, no debug
log file data is written on the
list output file.

N omitted No new debug log file is

created.

File names must
format.

comply with the NOS product set

Figure 6-8. DLFP Command General Format

The N option of the DLFP command provides a means
for creating a new debug log file that is a subset
of an existing debug log file. The new file can be

| separately processed by a subsequent DLFP command
and separate DLFP directives.

An optional directive file can be submitted to the

I

DLFP to select special supervisory messages or net-
work data blocks for output. The directive file
can have zero or more directive records.

Each directive record is a Z type record, which can
contain one or more keywords starting in card image
column 1. Keywords allow you to select which

| supervisory messages or network data blocks are'

written to the output file. All keywords are
optional and can appear in any order. You can use
one or more blanks, or a comma followed by zero or
more blanks, to separate the keywords. You can use

DLFP(1=0,B=TAPE>

DLFP(D,L=SAVE>

DLFP(l=DIR,B)

DLFP reads the debug log
data from file TAPE. The
entire log file is processed
and written to output. The
output goes to the OUTPUT
file.

DLFP reads the debug log

data from file ZZZZZDN.
DLFP reads the INPUT file
looking for directives. If

the directives are not
correct, DLFP ignores them.
The output goes to file
SAVE.

DLFP aborts with the fatal
error message PARAMETER
FORMAT ERROR because there
is no file associated with
the B parameter. If the B
parameter is specified
correctly, DLFP reads file
DIR looking for directives.
If the directives are not
correct, DLFP aborts.

Figure 6-9. DLFP Command Examples

leading blanks. Figure 6-10 shows the general for- I
mat of DLFP directive keywords with examples of I
them in figure 6-11.

|

Each directive record initiates an independent
search. An empty directive file or empty directive
record or 1=0 causes all debug log file blocks to |
be output. Directive records are copied to the
output listing file.

DLFP issues dayfile messages to inform users of
fatal errors or processing completion. Appendix B

provides a list of all dayfile messages issued by
DLFP. Errors or informative messages can be written
to the output file by DLFP. All messages except NO
MESSAGES FOUND are fatal errors and cause the job
to be aborted unless the D option was specified on
the DLFP command. |

The general format of a log file listing is shown
in figure 6-12. (Section 7 includes a sample I

output.) NETON and NETOFF calls are logged to
record the start and end of NAM interfacing; only
successful NETON calls are logged. Each AIP call
logged is followed by the octal relative address
(in parentheses) from which the call was made. The
NETON call log includes the parameter values
declared on the statement. The NETDBG call log
lists the value declared for dbugsup as 0PT1 and
for dbugdat as OPT2. Calls that transfer super- I

visory messages or blocks are logged with their I

declared parameters, followed by the block header I

contents and block text area contents. (All words |
comprising a supervisory message are listed.) The
contents of each word are given in hexadecimal,
octal, 6-bit display code form, and ASCII-coded
form. Each block or message is numbered in the |
order it was transferred.

6-10 60499500 R

Keyword! Value

BD=

BT=

CN=

DN=

E

E0=

ET=

LE=

NM=

P=

PF=

PS=

R

sm=

SN=

T

yymmdd

hhmmss

yymmdd

hhmmss

hh

hhxx

Description

Specifies that only upline blocks with the flow control break flag bit Cbit brk)
set in the application block header are output.

Specifies that only messages or blocks that were logged on or after this date
are output. Messages or blocks before this date are not output, yy is the
rightmost two digits of the year, mm is the month, and dd is the day of the
month; 00<yy<99, 01<mm<12, 01<dd<31.

Specifies that only messages or blocks that were logged on or after this time
are output. Messages or blocks before this time are not output. If the debug
log file contains more than one day's traffic, messages or blocks beginning
after the first occurrence of this time will be output if BO is not specified,
hh is the hour, mm is the minute, and ss is the second; 00<hh<24, 00<mnK59,
00£ss<59.

- ~ - -

Specifies that only network data blocks with the cancel flag set in the appli-
cation block header are output.

Specifies that only synchronous and asynchronous supervisory messages and net-
work data blocks relating to connection number n are output; 1<n<255.

Reserved for CDC use.

Specifies that only supervisory messages with the error bit set are output.

Specifies that messages or blocks on or after this date are not to be output,
yy is the rightmost two digits of the year, mm is the month, and dd is the day
of the month; 00<yy<99, 01<mm<12, 01<dd<31.

Specifies that messages or blocks on or after this time are not to be output.
If the debug log file contains more than one day's traffic, searching terminates
after the first occurrence of this time if ED is not specified, hh is the hour,
mm is the minute, and ss is the second; 00<hh<24, 00<mm<59, 00<ss<59.

Specifies maximum length in central memory words of each message or block to be
output; 1<n<410 (default=10)

.

Specifies that only network data blocks with the no format effector bit set in

the application block header are output.

Specifies that only supervisory messages or network data blocks are output.
Messages generated by applications for the debug log file are ignored.

Specifies that only n messages or blocks are output; (K1000000.

Specifies that only network data blocks with the parity-error bit or auto input
mode bit set in the application block header are output.

Specifies that only supervisory messages with the primary function code (PFC)
equal to hh-| are output. No check is made to determine whether hh is a legal
PFC value; 00<hh16<FF.

Specifies that only supervisory messages with PFC/SFC equal to hhxx^ are output.
No check is made to determine whether hh is a legal PFC value and xx is a legal
SFC value. 0000<hh-|4<FFFF.

Specifies that only supervisory messages with the response bit set are output.

Specifies that no messages or blocks are output until the nth message, which
satisfies all the other keyword options, is found; CKnCl 000000.

Reserved for CDC use.

Specifies that only upline messages or blocks with the data truncation flag bit
set in the application block header are output.

Figure 6-10. DLFP Directive Keyword Format (Sheet 1 of 2)

60499500 R 6-11 •

Keywordt Value

U

Description

Specifies that only messages or blocks with the input block undeliverable bit

set in the application block header are output.

Specifies that only messages or blocks with the transparent data bit set in the

application block header are output.

tThe same keyword can appear more than once in a directive record. If there is a value associated with

this keyword, the value in the last occurrence of the keyword is the one used for the search. Blanks

can precede or follow the = sign. If both PF and PS are specified, the last one specified overrides the

first one specified. If there are errors in the directive record, the job is aborted unless the D option
was specified on the DLFP command. If the D option was specified, the directive record in error is

ignored and processing restarts with the next directive record, if any. If there are multiple errors in

a directive record, all errors are identified.

Figure 6-10. DLFP Directive Keyword Format (Sheet 2 of 2)

R,E

BD=780229,BT=2401 ,ED=780228

PF=ABC,SM=-1,LE=1 F,NM=1 0000000

X,CN=15,SM=20

PS=8301,CN=5,PF=83

BC=781 104,BT=2350,ED=7811 05,
ET=000000

LE=2,PF=67,NN=10

PS=8381

PS=6302,CN=1,E

,CN=300,UX,PF=FD,CN=30

DLFP processes and outputs all supervisory messages that have both
the response and error bit set. There are currently no supervisory
messages that have both bits set.

DLFP does not process this directive record because it contains

errors. The first error is that February 29, 1978 is an invalid date.
The second error is that 2401 is an invalid time. Note that it was

not an error to have the ED date earlier than the BD date although no
messages would ever be processed because of it.

DLFP does not process this directive record because it contains

errors. The first error is that ABC is not a two-character hexa-
decimal number. The second error is that - is not a legal character
to have in the directive record. The third error is that IF is not a

decimal number. The fourth error is that the character string

NH=1 0000000 is greater than 10 characters.

DLFP processes and outputs all network data blocks for connection
number 15 that have the transparent bit set, except for the first 19.

DLFP processes and outputs all supervisory messages relating to con-

nection number 5 that have a PFC=83i (FC mnemonic). Note that even

though PS is also specified, the directive is ignored because PF is

specified after it.

DLFP processes and outputs all messages and blocks that occurred from

11:50 PM on November 4, 1978 to midnight.

DLFP processes the first ten supervisory messages with PFC=67i o(C0N

mnemonic). Only the first two words of each supervisory message are

output.

DLFP outputs no messages. 81 is too large a value for SFC, so DLFP

does not find any matching supervisory message.

DLFP processes and outputs all C0N/ACRQ/R supervisory messages re-

lating to connection number 1 that have the error bit set.

DLFP does not process this directive record because it contains

errors. The first error is that the first keyword does not begin in

column 1. The second error is that 300 is too large a connection

number. The third error is that there should be a comma or blank
between the U and X. Even if the three errors were not present, DLFP
would not output any messages because currently FD is not a legitimate

PFC value. Also CN=30 does not fix the error in the first CN

directive.

Figure 6-11. DLFP Directive Examples

6-12 60499500 R

aname LOG FILE OUTPUT
DATE RECORDED yy/mm/dd

current date yy/mm/dd
PAGE ddd

hh .mm.ss.mil NETON (oooooo) ANANE = ccccccc DATE = yy/mm/dd
NSUP At>DR = oooooo MINACN = dddd MAXACN = dddd

NSG NO. ddd

hh .mrn.ss.mil NETDBG (oooooo) OPT1 = b 0PT2 = b DATE = yy/mm/dd MSG NO. ddd

hh .nm.ss.mil
ABT = dd

NETGET (oooooo) ACN = dddd HA = oooooo TA
ADR = dddd ABN = oooooo ACT = dd STATUS =

= oooooo TLMAX = dddd
bbbbbbbb TLC = ddd

HSG NO. ddd

001

002
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

oooooooooooooooooooo
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

nnn hhhhhhhhhhhhhhh oooooooooooooooooooo cccccccccc aaaaaaaaa

hh .mm.ss.mil NETLOG (oooooo) MSG NO. ddd

001
002

003

hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

hh .mm.ss.mil
ABT = dd

NETGETL (oooooo) ALN = dddd HA = oooooo TA

ADR = dddd ABN = oooooo ACT = dd STATUS =
= oooooo TLMAX = dddd

bbbbbbbb TLC = ddd
MSG NO. ddd

001

002
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

oooooooooooooooooooo
oooooooooooooooooooo

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

nnn hhhhhhhhhhhhhhh oooooooooooooooooooo cccccccccc aaaaaaaaa

hh .mm.ss.mil
ABT = dd

NETGETF (oooooo) ACN = dddd HA = oooooo NA

ADR = dddd ABN = oooooo ACT = dd STATUS =
= dd TAA = oooooo

bbbbbbbb TLC = ddd
MSG NO. ddd

FRAGMENT
001

002
FRAGMENT

1 SIZE = dddd
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

2 SIZE = dddd

ADDRESS = OOOOOO
OOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOO
ADDRESS = OOOOOO

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

FRAGMENT
nnn

dd SIZE - dddd
hhhhhhhhhhhhhhh

ADDRESS = oooooo
oooooooooooooooooooo cccccccccc aaaaaaaaa

hh mm.ss.mil
ABT = dd

NETGTFL (oooooo) ALN = dddd HA = oooooo NA
ADR = dddd ABN = oooooo ACT = dd STATUS =

= dd TAA = oooooo
bbbbbbbb TLC = ddd

MSG NO. ddd

FRAGMENT
001

1 SIZE = dddd
hhhhhhhhhhhhhhh

ADDRESS = oooooo
oooooooooooooooooooo cccccccccc aaaaaaaaa mnemonic

FRAGMENT
nnn

dd SIZE = dddd
hhhhhhhhhhhhhhh

ADDRESS = OOOOOO
OOOOOOOOOOOOOOOOOOOO cccccccccc aaaaaaaaa

hh. Mi.ss.mil NETPUT (oooooo) HA - oooooo TA = oooooo
ABT = dd ADR = dddd ABN = oooooo ACT = dd STATUS = bbbbbbbb TLC = ddd

MSG NO. ddd

001

002
hhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh

OOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOO

cccccccccc aaaaaaaaa
cccccccccc aaaaaaaaa

mnemonic

nnn hhhhhhhhhhhhhhh OOOOOOOOOOOOOOOOOOOO cccccccccc aaaaaaaaa

Figure 6-12. General Format of DLFP Output (Sheet 1 of 2)

60499500 R 6-13

hh.mm.ss.mil NETPUTF Coooooo) HA = oooooo NA = dd TAA = oooooo
ABT = dd ADR = dddd ABN = oooooo ACT = dd STATUS = bbbbbbbb TLC = ddd

FRAGMENT
001

nnn

FRAGMENT

1 SIZE = dddd ADDRESS = oooooo
hhhhhhhhhhhhhhh oooooooooooooooooooo

hhhhhhhhhhhhhhh oooooooooooooooooooo

dd SIZE = dddd ADDRESS = oooooo
hhhhhhhhhhhhhhh oooooooooooooooooooo

cccccccccc aaaaaaaaa

cccccccccc aaaaaaaaa

cccccccccc aaaaaaaaa

MSG NO. ddd

mnemonic

hh.am.ss.ail NETOFF (oooooo) DATE = yy/mm/dd. MSG NO. ddd

LEGEND:

arvame

hh.mm.ss.mil

yy/mm/dd

mnemonic

a ... a

b ... b

c ... c

d . .. d

h ... h

o . .. o

n ... n

Application name.

System clock time of the AIP call in hours, minutes, seconds, and milliseconds.

System date expressed as year, month, and day.

For supervisory messages, the message mnemonic appears; for network data blocks, this
area is blank.

Indicates ASCII characters are listed.

Indicates binary digits are listed.

Indicates display code characters are listed.

Indicates decimal digits are listed.

Indicates hexadecimal digits are listed.

Indicates octal digits are listed.

Indicates last central memory word listed from block.

Figure 6-12. General Format of DLFP Output (Sheet 2 of 2)

The listing provides the following labeled infor-
mation:

ACN gives the value used for the acn parameter
in the indicated call.

ALN gives the value used for the aln parameter
in the indicated call.

HA gives the octal relative address used in
place of the symbolic address specified for the
ha parameter in the indicated call.

TA gives the relative address used in place of
the symbolic address specified for the ta
parameter in the indicated call.

NA gives the value used for the na parameter in
the indicated call.

TAA gives the relative address used in place of
the symbolic address specified for the taa'
parameter in the indicated call.

TLHAX gives the value used for the tlmax
parameter in the indicated call.

ABT gives the abt field content for the appli-
cation block header used in the indicated call.

ADR gives the adr or acn field content for the
application block header used in the indicated
call.

ABN gives the abn field content for the appli-
cation block header used in the indicated call.

ACT gives the act field content for the appli-
cation block header used in the indicated call.

STATUS gives the settings of bits 19 through 12
for the application block header used in the
indicated call, at the time the call Is com-
pleted .

TLC gives the tic field content for the appli-
cation block header used in the indicated call.

FRAGMENT gives the number within the call taa
array used to locate the corresponding infor-
mation transferred by the call.

SIZE gives the content of the size field within
the call taa array used to delimit the corre-
sponding Information transferred by the call.

ADDRESS gives the address field content of the
taa array used to locate the corresponding
information transferred by the call.

6-14
60499500 R

Statistical File and Associated Utilities

The optional AIF code that creates the statistical
file allows you to record cumulative figures of
exchanges between the program and the network. The
AIP utility routine NETSTC gives the program a

method of selecting which portions of the program
have figures accumulated. The AIP utility NETLGS
allows you to write messages in the statistical
file. All statistical output is written to a local
file named ZZZZZSN.

Whether or not the statistical file is created
depends on the system library used to satisfy the
application program's externals. AIP code for the
program can be loaded from either NETIO or (if the
installation elects to install it) from NETIOD.
When NETIOD is used, all code needed to create the
statistical file is loaded; accumulation of figures
is automatically turned on initially. Because this
code causes additional processing overhead and
central memory requirements for the application
program's control point, you can remove the code
when the statistical file is not needed. You can
remove the code from the job without altering the
application program's structure by loading the AIP
code from NETIO instead of NETIOD. When NETIO is
used, the only part of the statistical file code
loaded is a do-nothing version of NETSTC.

When NETIOD is used, the statistical file is auto-
matically created without application program calls.
You can use calls to NETSTC to switch accumulation
off and back on throughout the program, and to dump
and restart statistics counters.

NETSTC Utility

NETSTC calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-13 shows the NETSTC utility FORTRAN
call statement.

Calls to NETSTC can occur in programs using either
NETIO or NETIOD. For example, when a NETSTC call
turns accumulation on and a status is returned
indicating accumulation is not possible, no error
occurs and the option selection is ignored. When
the program contains a NETSTC call immediately
after NETON to turn accumulation off and a status
is returned indicating accumulation is possible, a
statistical file is still created to contain a
record of the program's NETON, NETSTC, and NETOFF
calls. A call to NETSTC before NETON is legal.

Statistical file creation begins when the appli-
cation program successfully completes its NETON
call and ends when NETOFF is issued. A logical
end-of-record is written to file ZZZZZSN when
NETOFF is called. Because the output buffer used
for the file is not completely emptied into the
statistical file until the application program
issues a NETOFF call, it is important to issue the
call even when the program loses communication with
the network; otherwise, the last few entries written
to the statistical file for the job run cannot be
saved. All statistics are written to file ZZZZZSN
and the counters reset to zero whenever a call to
NETSTC is made to turn statistics gathering off and
AIP was loaded from NETIOD. Individual statistics
are written to ZZZZZSN and reset to zero whenever
the counter overflows.

CALL NETSTC (onoff, avail)

onoff An input parameter that turns the
accumulation of statistics on or off.
This parameter can have the values:

=0 Turn accumulation on.

=1 Turn accumulation off.

When statistics accumulation is turned
on, each call to an AIP routine
increments a counter for that routine
and each block transferred between the
application program and the network
increments a counter for blocks of
that type. Incrementing continues
until a call with an onoff parameter
of 1 is issued. Calls with onoff
parameters of cause the counters to
be reset to 0.

avail A return parameter that indicates
whether the statistics accumulation
portion of AIP was loaded when the
program was loaded. On return from
the call, this parameter can have the
values:

=0 Loading occurred from NETIOD
and accumulation is possible.

=1 Loading occurred from NETIO and
accumulation is not possible.

When a value of 1 is returned,
specification of for the onoff
parameter has no effect but does not
cause an error.

Figure 6-13. NETSTC Utility FORTRAN
Call Statement Format

NETLGS Utility

NETLGS calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and

5). Figure 6-14 shows the NETLGS utility FORTRAN
call statement format. NETLGS allows an application
to enter messages into the statistical log file
ZZZZZSN.

CALL NETLGS (address,size)

address An input parameter that indicates the
address of the message to be written
to the statistics log file. The
message must contain 6-bit display
code information with a line termi-
nator (12 to 66 bits of zero, right-
justified in a central memory word).

size An input parameter that indicates the
number of words in the message.

Figure 6-14. NETLGS Utility FORTRAN Call
Statement Format

60499500 R 6-15

When application program execution ends, the
statistical file exists as a local file named
ZZZZZSN. The file is written using NOS data
transfer macros; the contents are 6-bit display
code characters, formatted for printer output. To
obtain a listing of this file, the file must be
rewound and copied to OUTPUT, or otherwise disposed
by using ROUTE.

Each period for which statistics are accumulated
during program execution is listed separately in
the statistical file. Figure 6-15 shows the general
format of the period listings. The counters used
are 60-bit signed integers, reset to zero at the
beginning of each period. If a counter is not used
during a given period (its value remains zero), the
corresponding line for the counter is omitted from
the listing for that period. If a counter over-
flows during a given period, the corresponding line
in the listing is preceded by the message:

****COUNTER OVERFLOW****

and the counter is reset to zero. If the program
is running in parallel mode during the period, the
number of transfer attempts unsuccessful because
KIP was busy are listed. The CPU utilization shown
is cumulative between the NETON and NETOFF calls.
The NAK-S line indicates the number of block-not-
delivered (FC/NAK/R) supervisory messages received.

DEPENDENCIES FOR PROGRAM USE

If an application program needs to use any of the
features described in Types of Application Programs

I
earlier in this section, the application program
should be identified in the network's files as part
of the local host computer system's resources.
This is done by entering its application program
name into the local configuration file, using the
Network Definition Language (NDL). This action is
not the application programmer's responsibility and
is not described in this manual. Use of the Net-
work Definition Language is described in the Network
Definition Language reference manual mentioned in
the preface.

Until the application program is identified in the
NOS system CCMTNAP common deck, the program cannot
call NETON and execute with actual logical connec-
tions made. Until configured as a network resource,
the program's connection-servicing logic cannot be
debugged

.

When the program is identified in COMTNAP, it can
successfully perform a NETON call if the network is
operational. As soon as a NETON call is completed,
terminals can request connection to the program.

NAM STATISTICS GATHERING STARTED

NET j*
c
l DATE yy/mm/dd. TIME hh.mm.ss.

NAN STATISTICS GATHERING TERMINATED

NET
| STC | DATE yy/mm/dd. TIME hh.mm.ss.

CPU TIME USED: dddddd SEC

NUMBER OF PROCEDURE CALLS

NETCHEK dddddd
NETGET dddddd
NETGETF dddddd
NETGETL dddddd
NETGTFL dddddd
NETPUT dddddd
NETPUTF dddddd
NETSETP dddddd
NETWAIT dddddd

NUM8ER OF WORKLIST TRANSFER ATTEMPTS

SUCCESSFUL
UNSUCCESSFUL

dddddd
dddddd

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED

INPUT
INPUT
INPUT
INPUT

OUTPUT
OUTPUT
OUTPUT

ABT=0

ABT=1

ABT=2
ABT=3
ABT=1

ABT=2
ABT=3

dddddd
dddddd
dddddd
dddddd
dddddd
dddddd
dddddd

dddddd
dddddd

NUMBER OF ERRORS

LOGICAL ERROR
NAK-S

Legend:

yy/mm/dd System date of the call begin-
ning or ending the accumulation
period, expressed as year,
month, and day

hh.mm.ss System clock time of the call
beginning or ending the accumu-
lation period, expressed in
hours, minutes, and seconds

d...d Indicates decimal digits

Figure 6-15. General Format of One Period
Listing in Statistical File

6-16
60499500 S

Before a terminal can complete a connection to the
program, the user name from its login procedure
must have an access word bit associated with the

application program's name in COMTNAP. This
association is established by using MODVAL and must
exist for all login user names. The procedure is

not described further in this manual because it is

not the application programmer's responsibility.

If the application program uses the batch device
interface , the owning console for the passive
device it is intended to service must be configured
in the local configuration file with the program

| declared as the primary application for the ter-
minal. Unless this is done, the passive devices
cannot access the application program. The appli-
cation programs released by CDC with this version
of the network software only provide a mechanism

for the switching of console device connections to
other programs. A passive device configured with
the Remote Batch Facility as its primary application
program cannot be used by any other application
program.

MEMORY REQUIREMENTS
Although the size of an application program varies
with its complexity and functions, the AIP coding
added by the CYBER loader does not normally exceed
1100 words of central memory. The version of AIF
that generates the debug log file and statistics

file requires 1100 more words. Using the QTRM
utility package adds less than 700 additional words
to the program' s central memory field length
requirements

.

60499500 R 6-17

SAMPLE FORTRAN PROGRAM 7|

| This section contains an annotated listing of

sample FORTRAN program RMV3, the debug log file,

and statistics file generated when the program is

run, and the configuration information used so that
the program could be run. In this sample program,
RMV3 is used to refer to the name of the FORTRAN
program and the name of the batch job that ran it,

while RMV2 is used to refer to the application
name. This sample program does not attempt to use
all possible supervisory message sequences or other
features of the Network Access Method interface to
the network software.

Application program RMV2 echoes terminal keyboard
input back to the terminal and provides some addi-
tional dialog. Possible dialogs are described later
in this section.

CONFIGURATION REQUIREMENTS
RMV2 is designed only for the servicing of inter-
active console devices. This program contains no
logic to initialize batch device connections or to

I

support application-to-application connections.
RMV2 contains no logic requiring it to be config-
ured as a unique identifier application program.
RMV2 is not configured as a privileged application;
it is submitted to the operating system and executed
as a batch origin job.

RMV2 is completely configured in the local config-
uration file by the Network Definition Language
statement

:

RMV2:APPL.

and terminal operators must log in to it using this
application program name.

I Devices accessing RMV2 can be configured with RMV2
as an initial application program if they have a

device type of console.

JOB COMMAND PORTION

Program RMV3 was run using the job commands shown

in figure 7-1. The user name appearing on the NOS
USER command has the CUCP bit set in its associated

access word.

Although the command portion uses the version of AIP

that generates the debugging and statistical files

j

RMV3 itself does not contain calls to the routines
controlling entries in those files. The files are

generated for the entire program by default.

PROGRAM PORTION
Figure 7-2 shows the program portion of the RHV3 |
batch job. The comments in the program explain most
of the program's logic. The terminal operator
dialog supported by RMV2 includes the text exchanges
shown in figure 7-3. This figure does not illus- I

trate login dialog or dialog after RMV2 is discon- I

nected from the device. The former can be inferred |

from the connection-request information entered for
the connection in the debugging log file created by

the AIP code after NETON of RMV2. Note that RMV2

responds to most error conditions or problems by
shutting down.

PROGRAM OUTPUT
The FORTRAN code in RMV3 produces several entries

in file OUTPUT. Figure 7-4 shows the debug log |
file listing produced by the AIP code in RMV3. The
message traffic listed in this file can be compared
with the program logic documented in figure 7-2 to I

produce a processing flow diagram for the connection I

involved. Figure 7-5 shows the statistical file |
listing produced by the AIP code in RMV3.

RMV3. <
USER (APPL1 ,PASS,FAM

)

CHARGE (0059,2934657)
ATTACH (WW)
FTN5CI=RHV,L0=S/-A)
LDSET(LIB=NETIOD) <

GET(RELJOB) <-—

LGO.

REWIND (ZZZZZ5N)

DLFP(I=0)

COPY (ZZZZZSN)

Job name command.

Uses debug and statistical file optional code version of AIP.

File containing NOS commands for NETREL call.

Disposes of local- files containing statistical file and debug log file
by copying the first one to OUTPUT and executing the postprocessor to
completely list the contents of the second one.

Figure 7-1. Command Portion of RMV3 Job

60499500 R 7-1

PROGRAM RHV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1

D0=-LONG/-OT,ARG=-COMNON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5, I=RHV,m)UTPUT,LO=S /-A.

1 PROGRAM RNV3
2

3
4 C NAM 1 REFERENCE MANUAL SAMPLE PROGRAM
5 C ECHOS INTERACTIVE CONSOLE OPERATOR INPUT
6
7 C NOTE THAT THE DEBUG LOG FILE AND STATISTICAL FILE LOCAL NAMES
8 C ARE NOT REQUIRED ON THE PROGRAM STATEMENT GIVEN ABOVE.
9

10

11 IMPLICIT INTEGER(A-Z)
12 COMMON /RMCOM/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
13 COMMON /RMC0H/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
14 COMMON /RMC0H/NB(20),HA,INSTAK(20),0UTSTAK(20),ENDCN,SHUTD,INTRRSP
15 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
16
17 C NOTE THAT THE TEXT AREAS ARE SEPARATE FOR DATA AND SUPERVISORY
18 C MESSAGES. THEIR SIZES ARE CHOSEN FOR THE LARGEST EXPECTED SUPERVISORY
19 C HESSAGE,ARBITRARILY SUPPORTING UP TO 314 CHARACTERS OF DEVICE
20 C INPUT DATA.
21

22

23 COMMON /RHCON/TA(63),STAK(20),0VRFLHA(8,20),OVRFLTA(63,8,20),US1
24 COMMON /RMCOM/IABN(20),SNHA,SHTA(63),SSM(8),HC,LFN,ABT,ACT,TLC
25 EXTERNAL REPREV,CHKSUH
26
27
28 C INITIALIZE AND SET CONSTANTS
29
30 C SET UP LOCAL FILE NAME FOR NETREL CALLS
31

32 DATA LFN/L"RELJ0B'7
33
34 C FILE RELJOB CONTAINS THE FOLLOWING COMMANDS:
35
36 C RELJOB.
37 C USER (APPL1,PASS, FAM1)
38 C CHARGE (0059,2934657)
39 C DLFP(I=0)
40
41 C THIS IS THE CIRCULAR OUTPUT STACK FOR EACH CONNECTION
42
43 DATA INSTAK, OUTSTAK/20*0,20*0/
44
45
46 C K IS THE APPLICATION BLOCK NUMBER COUNTER
47
48 DATA K/20*1/
49
50
51 C THESE ARE NSUP WORD FIELD MASKS
52

53 DATA S/0"02000000000000000000'7
54 DATA I/O"04000000000000000000"/
55 DATA MC/0"Q0000000007777777777'V

Figure 7-2. Program Portion of RHV3 (Sheet 1 of 24)

• 7-2 60499500 R

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05- 11.38.17 PAGE 2

56
57
58 C THESE ARE BREAK-PROCESSING FLAGS

59
60 DATA INTRCHR,CHANRST,CHANCLR/0,0,0/
61

62
63 C THIS INITIALIZES THE FLOW. CONTROL ALGORITHM FOR ALL

64 C POSSIBLE CONNECTIONS

65
66 DATA ABL,NB,NACN,ACN,ABHIBU,STAK/20*0,20*0,20*0,0,0,20*0/
67

68
69 C PACK MASK FOR CHARACTERS THAT COMPRISE OPERATOR END-CONNECTION
70 C COMMAND FOR NORMAL DISCONNECTION PROCESSING
71 C WHICH IS THE CAPITALIZED COMMAND ENDCN IN 12-BIT BYTES
72
73 DATA ENDCN/0"01050116010401030116'7
74
75

76 C PACK MASK FOR CHARACTERS THAT COMPRISE OPERATOR SHUTDOWN
77 C COMMAND FOR NORMAL PROGRAM TERMINATION PROCESSING,
78 C WHICH IS THE CAPITALIZED COMMAND SHUTD IN 12-BIT BYTES
79
80 DATA SHUTD/0"01 2301 1001 2501 2401 04*7

81

82

83 C PACK A CONSTANT FOR SUPERVISORY MESSAGE HEADER WORDS
84
85 DATA SMHDR/0"03000000000004000001 "/

86
87
88 C PACK A CONSTANT HEADER WORD FOR DISPLAY CODED OUTPUT
89 C OF BLOCK TYPE 2. NOTE THAT THE NO-FORMAT-EFFECTOR BIT IS NOT SET
90 C BECAUSE ALL OUTPUT TO THE DEVICE GENERATED BY THE PROGRAM CONTAINS

91 C A FORMAT EFFECTOR CHARACTER.
92
93 DATA DSHDR/0"02000000000020000024 ,7
94

95
96 C NOTE THAT ONLY 10 CHARACTERS OF OUTPUT ARE PERMITTED BY
97 C THE TLC DECLARED, PLUS A ZERO TERMINATOR WORD FOR THE LOGICAL LINE.

98
99 C PACK A CONSTANT HEADER WORD FOR DISPLAY CODED OUTPUT
100 C OF BLOCK TYPE 1. NOTE THAT THE NO-FORMAT-EFFECTOR BIT IS NOT SET

101 C BECAUSE ALL OUTPUT TO THE DEVICE GENERATED BY THE PROGRAM CONTAINS

102 C A FORMAT EFFECTOR CHARACTER.
103
104 DATA DSHDR1/0"01 000000000020000024"/
105
106 C AGAIN, ONLY 10 CHARACTERS ARE PERMITTED, PLUS A TERMINATOR WORD.

107
108
109 C CREATE MASK FOR UNIT SEPARATOR INSERTION CODE

110
111 DATA US,US1/0"00370000000000000000",0"70370000000000000000"/
112

Figure 7-2. Prog ran Portion of RMV3 (Sheet 2 of 24)

60499500 R 7-3

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 3

113
114 C SET UP REPRIEVAL CODE TO SALVAGE DEBUG AND STATISTICAL FILES
115
116 CALL REC0VR(REPREV,0"277",L0CF(CHKSUM)>
117
118
119 C SET UP ALL OTHER VARIABLES AND CONSTANTS
120
121 CALL SETUP
122
123
124 C ESTABLISH ACCESS TO THE NETWORK AND BEGIN DEBUG LOG
125 C FILE CREATION
126
127 CALL NET0N("RMV2",NSUP,NSTAT,1,20)
128
129
130 C TEST FOR ACCESS COMPLETION
131
132 IF (NSTAT.NE.O) THEN
133 PRINT 100, NSTAT
134 100 FORMAT (• NSTAT = ',020)
135 STOP 111
136 END IF
137
138
139 C UPDATE NSUP FLAGS, THEN PERFORM CONNECTION ESTABLISHMENT PROCESSING
140 C AND DISPOSE OF OTHER SUPERVISORY MESSAGES RECEIVED.
141

142 15 CALL NETWAIT (4095,0)
143 16 SHUTDWM)
144 SYNC=0
145 CALL LOOKSH (SHUTDUN,L,SYNC)
146
147
148 C RETURN FROM FC/ACK/R
149
150 17 IF CL.E8.1) THEN
151 GO TO 9
152
153
154 C RETURN FROM CON/REQ/R
155
156 ELSE IF (L.ES.2) THEN
157 GO TO 15
158
159
160 C RETURN FROM FC/INIT/R
161
162 ELSE IF (L.E«.3> THEN
163 GO TO 41
164
165
166 C RETURN FROM INTR/USR/R
167
168 ELSE IF (L.EQ.4) THEN
169 IF(INTRCHR.EQ.O) THEN

Figure 7-2. Program Portion of RHV3 (Sheet 3 of 24)

• 7-* 60499500 R

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 4

2 170 GO TO 9
2 171 ELSE
2 172 GO TO 551

2 173 END IF
2 174
2 175

2 176 C RETURN FROM FC/INA/R
2 177

178 ELSE IF CL.EQ.5) THEN
179 GO TO 9

180
181

182 C RETURN FROM CON/CB/R
183
184 ELSE IF (L.EQ.6) THEN

185 GO TO 9

186
187
188 C RETURN FROM FC/NAK/R
189
190 ELSE IF CL.EQ.7) THEN
191 GO TO 9

192
193
194 C RETURN FROM ERR/LGL/R
195
196 ELSE IF (L.EQ.8) THEN
197 GO TO 9
198
199
200 C RETURN FROM HOP/XX/R
201

202 ELSE IF (L.E0.9) THEN
203 GO TO 9
204
205

206 C RETURN FROM CON/END/R
207
208 ELSE IF (L.EQ.10) THEN
209 GO TO 9
210
211 -

212 C RETURN FROM SHU/INS/R
213
214 ELSE IF (L.Ea.11) THEN
215 GO TO 554
216
217

218 C RETURN FROM BI/MARK/R
219
220 ELSE IF (L.Efi.12) THEN
221 GO TO 551
222
223
224 C RETURN FROM BAD BLOCK
225
226 ELSE

Figure 7-2. Program Portion of RMV3 (Sheet 4 of 24)

60499500 R 7-5 •

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ H/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 5

227 GO TO 777
228 END IF

229
230
231 C INITIALIZE CONNECTION BY SENDING OUTPUT
232
233 41 LASTBLK=1
234
235

236 C SEND IDENTIFYING BANNER AS FIRST OUTPUT AFTER INITIAL CONNECTION
237
238 SEND=1

239 HA=DSHDR1
240 CALL NSTORE(HA,L"ABHADR",ACN)
241 TA(1)="1RHV2 VER3"
242 TA<2)=0
243 CALL OUTPT (SEND)
244
245
246 C NOTE THAT ALL CONNECTIONS ARE SERVICED AS FULL-DUPLEX ON THE
247 C APPLICATION PROGRAM'S END
248
249 40 CALL PROMPT (SEND)
250 LASTBLK=0
251 39 CALL OUTPT (SEND)
252 IF (SEND .EQ. 0) GO TO 38
253 IF (STAK(ACN) .EQ. 1) THEN
254 SEND=0
255 GO TO 39
256 ELSE IF (LASTBLK.EQ.1) THEN
257 GO TO 40
258 ELSE
259 GO TO 9

260 END IF
261

262
263 C PAUSE TO ALLOW OUTPUT QUEUE TO CLEAR
264
265 38 CALL NETWAIT(2,1)
266 SHUTDUN=0
267 SYNC=0
268 CALL LOOKSM (SHUTDWN,L,SYNC)
269 IF (L.EQ.1) THEN

1 270 SEND=0
1 271 GO TO 39
1 272 ELSE IF (L.EQ.2) THEN
1 273 IF(INTRCHR.EQ.O) THEN
2 274 GO TO 9
2 275 ELSE
2 276 GO TO 551
2 277 END IF

278 ELSE IF (L.EQ.3) THEN
279 GO TO 41

280 ELSE IF (L.EQ.4) THEN
281 GO TO 38
282 ELSE IF (L.EQ.5) THEN
283 GO TO 9

Figure 7-2. Program Portion of RMV3 (Sheet 5 of 24)

7-6 60499500 R

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 6

1 284 ELSE IF (L.EQ.6) THEN
1 285 GO TO 15

1 286 ELSE IF (L.E&.7) THEN
1 287 GO TO 9
1 288 ELSE IF <L.EQ.8> THEN

1 289 GO TO 9

1 290 ELSE IF (L.EQ.9) THEN
1 291 GO TO 9
1 292 ELSE IF (L.EQ.10) THEN
1 293 GO TO 15

1 294 ELSE IF U..EQ.11) THEN
1 295 GO TO 554
1 296 ELSE IF (L.EQ.12) THEN
1 297 GO TO 551

1 298 ELSE
1 299 GO TO 38
1 300 END IF

1 301

1 302
1 303 C PAUSE FOR INPUT DATA OR A SUPERVISORY MESSAGE
1 304

305
306
307

9 CALL NETWAIT<4095,0)

308 C TEST FOR QUEUED MESSAGES OR DATA BLOCKS
309
310 777 IFC(NSUP.AND.S).NE.O) GO TO 16

311

312
313 C FETCH QUEUED INPUT FROM A DEVICE
314
315 ALN=1

316 CALL NETGETL<ALN,HA,TA,10)
317
318
319 C UNPACK THE BLOCK HEADER FOR THE DELIVERED INPUT BLOCK
320
321 778 ABT=NFETCH(HA,L"ABHABT")
322 ACT=NFETCH (HA,L"ABHACT")
323 ACN=NFETCH(HA,L"ABHADR")
324 ABHXPT=NFETCH (HA,L"ABHXPT")
325 ABHTRU=NFETCH (HA,L"ABHTRU">
326 ABHCAN=NFETCH(HA,L"ABHCAN")
327
328
329
330

ABHIBU=NFETCH(HA,L"ABHIBU")
TLC=NFETCH (HA,L"ABHTLC">

331 C BRANCH TO PROCESS DATA BLOCK OR SYNCHRONOUS SUPERVISORY MESSAGE
332
333 IF (ABT.EQ.3) THEN

1 334 SYNC=1
1 335 CALL LOOKSN (SHUTDWN,L,SYNC)
1 336 GO TO 17
1 337 END IF

1 338
1 339
1 340 C MAKE ANOTHER ATTEMPT TO FETCH QUEUED BLOCK

Figure 7-2. Program Portion of RMV3 (Sheet 6 of 24)

60499500 R 7-7

PROGRAM RMV3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 7

1 341
342 IF (ABT.EQ.O.AND.ABHIBU.Ea.1) CALL NETGET(ACN,HA,TA,63)
343 IF (ABT.E(L0.AN0.ABHIBU.EQ.1> GO TO 778

344 IF (ABT.EQ.0.AND.ABHIBU.NE.1) GO TO 9
345

346
347 C TEST FOR THROW-AWAY INPUT
348
349 IFCABHCAN.EQ.1) GO TO 40
350
351
352 C TEST FOR TYPE-IN OF ENOCN COMMAND
353
354 IF(TA(1).E«.ENDCN) GO TO 444
355
356
357 C TEST FOR TYPE-IN OF SHUTO COMMAND
358
359 IF(TA(1).E«.SHUTD) GO TO 666
360
361

362 C PROCESS ECHOABLE TEXT
363
364 CALL PACK (SEND)

365 GO TO 39
366
367
368 C PROCESS USER BREAKS
369
370 551 IF((CHANCLR.EQ.1>.AND.(CHANRST.EQ.1)> THEN
371
372
373 C TELL THE DEVICE OPERATOR WHAT HAPPENED
374

1 375 IF (INTRCHR.EQ.3) TA(1)=" BREAK 1 "

1 376 IF UNTRCHR.E8.4) TA(1)=" BREAK 2 "

1 377 HA=0SHDR1
1 378 TA(2)=0
1 379 CALL NSTORE(HA,L"ABHADR",ACN)
1 380 LASTBLK=1
1 381 SEND=1
1 382 CALL OUTPT(SEND)
1 383 CHANCLR=CHANRST=INTRCHR=0
1 384 GO TO 40
1 385 ELSE

1 386 GO TO 9
1 387 END IF

1 388
1 389
1 390 C DISCONNECT THIS TERMINAL DEVICE
1 391

392 444 SMTAC1)=SMTAC2)=0
393 CALL NSTORE(SHTA,L"PFCSFC",CONEND)
394 CALL NSTORE(SMTA,L"RC",0)
395
396
397 C PASS CONNECTION DIRECTLY TO IAF WITHOUT DIALOG

Figure 7-2. Program Portion of RHV3 (Sheet 7 of 24)

• 7-8 60499500 R

PROGRAM RIW3 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 8

398
399 CALL NSTORECSMTA,L"CONANM",R"IAF ")

400 SNHA=SHHDR + 0"1 "

401 CALL NStORE(SMTA /L"CONACN",ACN)
402 NACN(ACN)=0
403 CALL NETPUT(SMHA,SMTA)
404 GO TO 9
405
406 666 CALL SHUTDN
407
408
409 554 STOP
410 END

Figure 7-2. Program Portion of RMV3 (Sheet 8 of 24)

60499500 R 7-9 «

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ H/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1

DO=-LON6/-0T,ARG=-COMM0N/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000

FTN5,I=RMV,L=OUTPUT,LO=S/-A.

1 SUBROUTINE LOOKSM (SHUTDWN,L,SYNC)

2
3
4 C PROCESS INCOMING SUPERVISORY MESSAGES

5
6 IMPLICIT INTEGER (A-Z)

7 COMMON /RMCOM/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20>

8 COMMON /RHCON/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
9 COMMON /RMCOM/NB(20),HA,INSTAK(20),OUTSTAK<20),ENDCN,SHUTD,INTRRSP

10 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR

11 COMMON /RMCOM/TA(63),STAK(20),OVRFLHA(8,20),OVRFLTA(63,8,20),US1
12 COMMON /RMC0N/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC

13

1*
15 C PROCESS SYNCHRONOUS SUPERVISORY MESSAGES

16
17 IF (SYNC.E0.1) THEN
18 SMHA=HA
19 DO 2 1=1,63

20 SMTACI)=TA(I)
21 2 CONTINUE
22 GO TO 1

23
24 ELSE

25 GO TO 3

26
27 END IF

28
29
30 C WAIT FOR AN ASYNCHRONOUS SUPERVISORY MESSAGE IF NECESSARY

31

32 3 IF ((NSUP.AND.S).EQ.O) THEN

1 33 IF(<(NSUP.AND.I).Ea.O).AND.(SHUTDWN.EQ.O)> THEN

2 34 CALL NETWAIT (4095,0)

2 35
2 36 C RETURN TO FETCH INPUT DATA

2 37
2 38 RETURN
2 39
2 40 ELSE

2 41 L=13
2 42 RETURN
2 43

2 44 END IF

45 END IF

46

47
48 C FETCH AN ASYNCHRONOUS SUPERVISORY MESSAGE FROM ACN=0

49 C ON LIST ZERO

50
51 ALN=0
52 CALL NETGETL(ALN,SMHA,SMTA,63>

53
54
55 C UNPACK THE MESSAGE IDENTIFICATION AND BRANCH ON THE TYPE

Figure 7-2. Program Portion of RMV3 (Sheet 9 of 24)

7-10 60499500 R

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 2

56
57 1 PFCSFC=NFETCH(SMTA,L"F*FCSFC")

58 PFC=NFETCH<SHTA,L"PFC">

59
60

61 C NOTE THAT THIS CODE EXITS WITH THE L VALUE SET SO THAT IT CAN BE

62 c USED FOR BRANCHING IN THE MAIN PROGRAM ON RETURN FROM LOOKSM
63
64 IF (PFCSFC.EQ.SHCD) THEN

1 65 L=1
1 66 GO TO 10
1 67 ELSE IF (PFCSFC.EQ.SM(2)) THEN

1 68 L=2
1 69 GO TO 20
1 70 ELSE IF (PFCSFC.EQ.SMC3)) THEN
1 71 L=3
1 72 GO TO 30
1 73 ELSE IF (PFCSFC.EQ.SM(4)) THEN
1 74 L=4
1 75 GO TO 50
1 76 ELSE IF (PFCSFC.EQ.SM<5)) THEN
1 77 L=5
1 78 GO TO 60
1 79 ELSE IF CPFCSFC.EQ.SM(6)) THEN
1 80 L=6
1 81 GO TO 70
1 82 ELSE IF (PFCSFC.EQ.SM(7)) THEN
1 83 L=7
1 84 GO TO 80
1 85 ELSE IF (PFCSFC.EQ.SMC8)> THEN
1 86 L=8
1 87 GO TO 90
1 88 ELSE IF (PFCSFC.EQ.SMC9)) THEN

1 89 L=9
1 90 00 9 M=1,7
1 91 IF(PFCSFC.EQ.SSM(M))G0T0(11,21,31,41,51,61,71),M
1 92 9 CONTINUE
1 93 ELSE IF CPFCSFC.Ea.SMCIO)) THEN
1 94 L=10
1 95 GO TO 110
1 96 ELSE IF (PFCSFC.Ea.SM(H)) THEN
1 97 L=11

1 98 GO TO 120
1 99 ELSE IF (PFCSFC.Ea.SM(12>) THEN
1 100 L=12
1 101 GO TO 130
1 102
1 103

1 104 c TEST FOR END OF MESSAGE BRANCHING TABLE
1 105
1 106 ELSE

1 107 L=13
1 108 END IF

1 109

1 110
1 111 c PROCESS UNRECOGNIZED SUPERVISORY MESSAGE CODE

1 112

Figure 7-2. Program Portion of RMV3 (Sheet 10 of 24)

60499500 R 7-11

SUBROUTINE LOOKS* 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 3

113 IF (SM(L>.EQ.999) THEN
114
115 C ISSUE DIAGNOSTIC MESSAGE TO OUTPUT FILE

116
1 117 PRINT 1000, SMHA,SMTA

1 118 1000 FORMAT (' COULD NOT FIND SM IN TABLE OF SUPPORTED CODES',

1 119 * //' HA = ',020,/' TA = ',/63C1X,020/>)
1 120

1 121 END IF

1 122
1 123
1 124 C TRY AGAIN
1 125

126 GO TO 3

127
128
129 C PROCESS FC/ACK/R SUPERVISORY MESSAGE
130
131 10 ACN=NFETCH(SNTA,L"FCACN">
132 IABN(ACM)=NFETCH(SMTA,L"FCABN")
133
134 C UPDATE FLOW CONTROL ALGORITHM
135
136 NBCACN)=NBCACN) - 1

137 RETURN
138
139
140 C PROCESS CON/REQ/R SUPERVISORY MESSAGE
141
142 C UNPACK MESSAGE AND USE CONTENTS TO SET UP CONNECTION

143 C FLOW CONTROL ALGORITHM
144
145 20 ACN=NFETCH(SMTA,L"CONACN">
146 ABLCACN)=NFETCH(SMTA,L"CONABL")
147 DT=NFETCH (SMTA,L"CONDT")
148 NB(ACN)=0
149
150 C PACK C0N/RE8/N OR CON/REQ/A MESSAGE

151

152 SMTAC1)=0

153 CALL NSTORE CSMTA,L"PFCSFC",L"CONREQ">
154 CALL NSTORE (SMTA,L"CONACN",ACN)

155
156 C SET RESPONSE BIT TO ACCEPT OR REJECT CONNECTION
157
158 IF (DT.EQ.O) CALL NSTORE (SMTA,L"RB",1)
159 IF (DT.NE.O) CALL NSTORE (SMTA,L"EB",1

)

160
161 C INPUT MUST BE ASCII IN 12-BIT BYTES
162
163 CALL NSTORE <SMTA,L"CONACT" ,3)

164
165 C ASSIGN ALL INTERACTIVE CONSOLES TO LIST 1

166
167 CALL NSTORE CSMTA,L"C0NALN",1)
168 SMHA=SMHDR
169

Figure 7-2. Program Portion of RMV3 (Sheet 11 of 24)

7-12 60499500 R

SUBROUTINE LOOKSM 74/74 OPT=0,R0UND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 4

170 C SEND THE CONNECTION-ACCEPTED OR CONNECTION-REJECTED SUPERVISORY MESSAGE
171
172 CALL NETPUT<SMHA,SMTA)
173
174 RETURN
175
176
177 C PROCESS FC/INIT/R SUPERVISORY MESSAGE
178
179 C SET THE RESPONSE BIT TO INDICATE READY FOR
180 C TRANSMISSION TO BEGIN
181

182 30 CALL NSTORE <SMTA,L"RB",1>
183
184 C DETERMINE LOGICAL CONNECTION INVOLVED AND UPDATE
185 C CONNECTION TABLE
186
187 ACN=NFETCH(SNTA,L"FCACN">
188 NACNCACN)=1
189 SMHA=SHHDR
190 IABN(ACN)=ABN(ACN)=0
191
192 C SEND THE CONNECTION-INITIALIZED MESSAGE
193
194 CALL NETPUT(SMHA,SMTA)
195
196 RETURN
197
198
199 C PROCESS INTR/USR/R SUPERVISORY MESSAGE
200
201 50 ACN=NFETCH(SMTA,L"INTRACN")
202 INTRCHR=NFETCH (SMTA,L"INTRCHR")
203
204 C PACK RESPONSE MESSAGE AND CLEAR FLOW CONTROL PARAMETERS
205

206 SMTAC1)=0
207 SMHA=SMHDR
208 CALL NSTORE (SMTA,L"PFCSFC",INTRRSP>
209 CALL NSTORE <SNTA,L"INTRACN",ACN)
210 CALL NETPUT CSMHA,SHTA)
211

212 C IF THIS IS A USER BREAK, CLEAR THE OUTPUT OJEUE
213
214 IF (ClNTRCHR.Eft.3).0R.<INTRCHR.Ea.4)) THEN
215 CHANRST=1
216 INSTAK(ACN)=0UTSTAK<ACN)=STAK(ACN)=0
217
218 END IF
219
220
221 C TELL THE DEVICE OPERATOR WHAT HAPPENED
222
223 IF ((INTRCHR.NE.3).AND.(INTRCHR.NE.4>) THEN
224 TA(1)=" BYPASSED "

225 HA=0SHDR1
226 TA(2)=0

Figure 7-2. Prograi Portion of RMV3 (Sheet 12 of 24)

60499500 R 7_13

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-OS FTN 5.1+599 83/08/05. 11.38.17 PAGE 5

1 227 CALL NSTORE (HA,L"ABHADR",ACN)
1 228 SEND=1

1 229 LASTBLK=1

1 230 CALL OUTPT (SEND)
1 231 CALL PROMPT (SEND)

1 232 LASTBLK=0
1 233 CALL OUTPT (SEND)
1 234 INTRCHR=0
1 235

1 236 RETURN
1 237
1 238 END IF

239 RETURN
240
241

242 C PROCESS FC/INACT/R SUPERVISORY MESSA6E
243
244 C UPDATE CONNECTION TABLE
245
246 60 ACN=NFETCH(SMTA,L"FCACN")
247 NACN(ACN) =

248 HA=DSHDR
249 CALL NSTORE (HA,L"ABHADR", ACN

)

250
251
252 C OUTPUT DISCONNECTION INDICATOR TO POSSIBLE OPERATOR
253
254 TA(1)=" TIME OUT "

255 TA(2)m
256
257
258 C NOTE THAT RNV2 DOES NOT WAIT FOR AN FC/ACK/R CORRESPONDING TO
259 C THIS OUTPUT MESSAGE. AN ERR/LGL/R MESSAGE WILL EVENTUALLY
260 c BE CAUSED BY THE CONNECTION TERMINATION PROCESSING CODE,
261 c CAUSING RMV2 TO NETOFF WITHOUT DEVICE OPERATOR
262 c OR HOST OPERATOR ACTION BEING REQUIRED.
263
264 INSTAK(ACN)=OUTSTAK(ACN)=STAK(ACN)=0
265 SEND=1
266 LASTBLK=0
267 CALL OUTPT (SEND)
268
269
270 c PACK AND SEND CONNECTION-END REQUEST MESSAGE
271

272 SMTA(1)=0
273 CALL NSTORE (SMTA,L"PFCSFC",CONEND)
274 CALL NSTORE (SMTA,L"CONACN",ACN)
275 SMTA(2)=0
276 SMHA=SMHDR
277 CALL NETPUT (SMHA,SMTA)

278 RETURN
279
280
281 c PROCESS CON/CB/R SUPERVISORY MESSAGE
282
283 70 ACN=NFETCH(SMTA,L"CONACN")

Figure 7-2. Program Portion of RMV3 (Sheet 13 of 24)

7-14 60499500 R

SUBROUTINE LOOKSM 74/74 OPT=0,R0UND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 6

284 PRINT 75,ACN
285 75 FORMATC CONNECTION BROKEN, ACN = ',13)

286
287
288 C FETCH ALL OUTSTANDING INPUT BLOCKS UNTIL A NULL
289 C BLOCK IS RECEIVED
290
291 73 CALL NETGET(ACN,HA,TA,63)
292 IF (NFETCH(HA,L"ABHABT").EQ.O) GO TO 72

293
294
295 C DETERMINE WHETHER THIS IS A NORMAL SHUTD SEQUENCE FETCHED OUT OF

296 C SYNCHRONIZATION. IF SO, USE THE ERR/LGL/R LOGIC TO SHUT DOWN.
297
298 IF(TAd).EQ.SHUTD) GO TO 76
299 GO TO 73
300
301

302 C CLEAN UP CONNECTION TABLE ENTRY AND AIP TABLES
303
304 72 CALL NSTORE(SMTA,L"CONACN",ACN)
305 CALL NSTORE(SMTA,L"RC",0)
306 CALL NSTORE(SMTA,L"PFCSFC",CONEND)
307 SMHA=SMHDR
308 NACN(ACN)=0
309 CALL NETPUT(SMHA,SMTA)
310
311 RETURN
312
313

314 C PROCESS FC/NAK/R SUPERVISORY MESSAGE
315
316 80 ACN=NFETCH(SMTA,L"FCACN")
317 ABN(ACN)=NFETCH(SMTA,L"FCABN")
318 PRINT 101 5, ACN, ABN (ACN)
319 1015 FORMAT(ACN = ',16,' ABN = ',110, ' NOT DELIVERED')
320
321 RETURN
322

323
324 C PROCESS CON/END /N SUPERVISORY MESSAGE
325 c PROCESSING TREATS THE MESSAGE AS ADVISORY IN ALL CASES.
326
327 110 MSGLTH=410
328 NREWIND=0
329 IF((NSUP.AND.MC).GT.255) CALL NETREL(LFN,MSGLTH,NREWIND)
330
331 RETURN
332
333
334 c PROCESS ERR/LGL/R SUPERVISORY MESSAGE,
335 c WRITE MESSAGE TO OUTPUT FILE FOR ANALYSIS, THEN SHUT
336 c DOWN OPERATIONS
337
338 90 PRINT 1001,SMHA,SMTA
339 1001 FORMAT (1X,"HA = ",020,/1X,"TA = ",/1X,020,1X,020/,1X,020)
340

Figure 7-2. Program Portion of RMV3 (Sheet 14 of 24)

60499500 R 7-15 •

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 7

341 76 SMTA(1)=SMTAC2>=0
342 CALL NSTORECSMTA,L"PFCSFC",CONEND)
343 CALL NSTORE(SMTA,L"RC",0)
344 SHHA=SMHDR
345 DO 333 11=1,20,1
346 IF <NACN(II).Efl.1) THEN
347 CALL NSTORE (SHTA,L"CONACN",II)
348 CALL NETPUT(SMHA,SMTA>
349
350
351 C UPDATE CONNECTION TABLE
352
353 NACN(II)=0
354 END IF

355

356 333 CONTINUE
357
358 CALL NETOFF
359 STOP 247
360
361

362 C PROCESS HOST OPERATOR TURN-DEBUGGING-ON COWHAND
363

364 11 CONTINUE
365 RETURN
366
367
368 C PROCESS HOST OPERATOR TURN-DEBUGGING-OFF COMMAND
369
370 21 CONTINUE
371 RETURN
372

373
374 C PROCESS HOST OPERATOR DUMP-FIELD-LENGTH COMMAND
375

376 31 DUMPID=1
377 ECS=1
378 CALL NETDMB (DUMPID,ECS)
379
380 RETURN
381

382
383 C PROCESS HOST OPERATOR STOP-LOGGING COMMAND
384
385 41 DBUGSUP=1
386 DUBDAT=1
387 CALL NETDBG (DBUGSUP,DBUGDAT,AVAIL)
388

389 RETURN
390
391

392 C PROCESS HOST OPERATOR START-LOGGING COMMAND
393

394 51 DBUGSUP=0
395 DBUGDAT=0
396 CALL NETDBG (DBUGSUP,DBUGDAT, AVAIL)
397

Figure 7-2. Program Portion of RMV3 (Sheet 15 of 24)

• 7-16 60499500 R

SUBROUTINE LOOKSM 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 8

398 RETURN
399
400
401 C PROCESS HOST OPERATOR RELEASE-LOG-FILE COMNAND
402
403 61 MSGLTH=410
404 NREWIND=0
405 CALL NETREL (LFN,MSGLTH,NREWIND)
406
407 RETURN
408
409
410 c PROCESS HOST OPERATOR RESTART-STATISTICS COMMAND
411

412 71 ONOFF=0
413 CALL NETSTC (ONOFF,AVAIL)
414
415 RETURN
416
417
418 c PROCESS THE BIMARK SYNCHRONOUS SUPERVISORY MESSAGE
419
420 130 HA=SMHDR
421 TA(1)=0
422 CALL NSTORE (HA,L"ABHADR",ACN)
423 CALL NSTORE (HA,L"ABHACT",2>
424 CALL NSTORE <HA,L"ABHTLC",2)
425 CALL NSTORE (TA<1),L"PFCSFC",R0MARK)
426 CALL NETPUTCHA/TAO))
427 CHANCLR=1
428
429 RETURN
430
431

432 c PROCESS SHUT/INSD/R SUPERVISORY MESSAGE, THEN
433 c SHUTDOWN OPERATIONS
434
435 c DETERMINE TYPE OF SHUTDOWN
436
437 120 IBIT^FETCH(SMTA,L"SHUTF")
438

439
440 c IF THIS IS A FORCED SHUTDOWN, STOP NOW
441 IF CIBIT.EQ.1) THEN

1 442 CALL NETOFF
1 443 STOP 313
1 444
1 445 END IF

1 446
1 447
1 448 c SHUTDOWN GRACEFULLY IF TIME PERMITS BY
1 449 c DISCONNECTING ALL TERMINAL DEVICES
1 450

451 CALL SHUTDN
452 END

Figure 7-2. Program Portion of RMV3 <Sheet 16 of 24)

60499500 R 7-17 •

SUBROUTINE OUTPT 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1

D0=-LON6/-0T,ARG=-COMM0N/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=OUTPUT,LO=S/-A.

1 SUBROUTINE OUTPT (SEND)

2
3
4 C OUTPUT ONE DATA BLOCK
5
6 IMPLICIT INTEGER (A-Z)

7 COMMON /RMCON/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(2O)
8 COMMON /RMCOM/C0NEND,ROMARK,ACN,ABN(20),SM(20),ABL(2O),ABHIBU,US
9 COMMON /RMCOM/NB(20>,HA,INSTAK(20),OUTSTAK(20>,ENDCN,SHUTD,INTRRSP

10 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
11 COMMON /RMCOM/TA(63),STAK(20),OVRFLHA(8,20),OVRFLTA(63,8,20),US1
12 COMMON /RNC0M/IABN(20),SMHA,SNTA(63),SSM(8),NC,LFN,ABT,ACT,TLC
13

14
15 C IS THERE DATA IN THE MAIN OUTPUT BUFFER?
16

17 IF (SEND.Ett.1) THEN
18
19 C IF SO, IS THERE SOMETHING ELSE TO SEND FIRST?
20

1 21 IF (STAK(ACN) .EQ. 1) THEN
1 22

1 23 C IF SO, ADD NEW OUTPUT TO STACK
1 24
2 25 GO TO 1

2 26 ELSE
2 27
2 28 C IF NOT, TEST IF NEW OUTPUT CAN BE SENT
2 29
2 30 GO TO 9
2 31 END IF

32 ELSE
33
34

35 C IF NOT, TEST IF DATA NEEDS TO BE SENT FROM THE STACK
36
37 GO TO 8
38 END IF
39
40 C IS THERE DATA IN THE STACK?
41

42 8 IF (STAK(ACN) .EQ. 0) THEN
43

44 C IF NOT, EXIT
45
46 RETURN
47 ELSE
48
49 C IF SO, TEST IF IT CAN BE SENT
50
51 GO TO 3
52 END IF

53
54

55 C CAN DATA BE SENT?

Figure 7-2. Program Portion of RMV3 (Sheet 17 of 24)

• 7-18 60499500 R

SUBROUTINE OUTPT 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 2

1 56

57 9 IF (C(NB(ACN).GE.ABL(ACN>).AND.(CHANCLR.EQ.O)).AND.
58 + (CHANRST.EQ.O)) THEN
59
60 C IF NOT, STACK IT

61

62 STAK<ACN)=0UTSTAK(ACN)=INSTAK(ACN>=1
63 OVRFLHAUNSTAK(ACN),ACN)=HA
64 DO 888 JJ=1, 63, 1

65 888 OVRFLTACJJ,INSTAKCACN),ACN)=TACJJ)
66 RETURN
67
68 C IF SO, DO IT
69
70 ELSE
71

72 C UPDATE FLOW CONTROL ALGORITHM
73

74 ABN(ACN)=ACN*64 + K(ACN)
75 K(ACN)=K(ACN) + 1

76 NB(ACN)=NB(ACN> + 1

77 CALL NSTORE(HA,L ,,ABHABN",ABN(ACN))
78 CALL NETPUT(HA,TA)
79 RETURN
80 END IF
81

82

83 c IS THERE ROOM FOR MORE DATA IN THE STACK?
84
85 c IF NOT, THROW AWAY NEW OUTPUT
86
87 1 IF (INSTAK(ACN).GT.OUTSTAK(ACN)) THEN

1 88 IF ((INSTAKUCN) - OUTSTAK(ACN)) .EQ. 7) THEN
2 89 SEND=0
2 90 RETURN
2 91 END IF

1 92 ELSE
1 93 IF (COUTSTAK(ACN) - INSTAK(ACN)) .ECt. 1) THEN
2 94 SEND=0
2 95 RETURN
2 96 END IF
1 97 END IF

1 98 c

1 99 c IF SO, SAVE THE NEW DATA
1 100

101

102
103

104

c

INSTAK(ACN)=INSTAK<ACN) + 1

IF (INSTAK(ACN) .EQ. 9) INSTAKCACN)=1
OVRFLHA(INSTAK(ACN),ACN)=HA
DO 999 11=1, 63, 1

105 999 OVRFLTAUI,INSTAK<ACN),ACN)=TA(II)
106

107
108 c PROCESS DATA ALREMY IS STACK
109
110 c CAN DATA BE SENT?
111

112 3 IF (NB(ACN) .GE. ABL(ACN)) THEN

Figure 7-2. Program Portion of RMV3 (Sheet 18 of 24)

60499500 R 7-19,

SUBROUTINE OUTPT 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 3

113
114 C IF NOT, EXIT
115

116 RETURN
117
118 C IF SO, DO IT

119
120 ELSE
121

122 C UPDATE FLOW CONTROL ALGORITHM
123
124 ABN(ACN)=ACN*64 + K(ACN)
125 KCACN)=K(ACN> + 1

126 N8(ACN>=NB(ACN) + 1

127 CALL NST0RE(OVRFLHA(0UTSTAK(ACN),ACN),L"ABHABN",ABN(ACN))
128 CALL NETPUT(OVRFLHA(0UTSTAK(ACN),ACN),
129 + OVRFLTA(1,0UTSTAK(ACN),ACN>)
130
131 C TEST IF STACK HAS BEEN EMPTIED
132
133 IF (OUTSTAK(ACN).EQ.INSTAK(ACN)) THEN

2 134 STAK(ACN)=0
2 135
2 136 c IF SO, REINITIALIZE POINTERS
2 137
2 138 OUTSTAK <ACN)=INSTAK (ACN)=0
2 139 ELSE
2 140
2 141 c IF NOT, MOVE THE SEND BUFFER POINTER FOR NEXT PASS
2 142

2 143 OUTSTAK (ACN)=OUTSTAK(ACN) + 1

2 144 IF (OUTSTAK(ACN) .E«. 9) 0UTSTAK(ACN)=1
2 145 RETURN
2 146 END IF

1 147 END IF

1 148
149 RETURN
150 END

Figure 7-2. Program Portion of RMV3 (Sheet 19 of 24)

• 7-20 60499500 R

SUBROUTINE PROMPT 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1

D0=-LONG/-OT,ARG=-C0MMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

1 SUBROUTINE PROMPT (SEND)
2

3 IMPLICIT INTEGER (A-Z)

4 COMMON /RMC0M/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20>
5 COMMON /RMCOM/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
6 COMMON /RHCOM/NB(20),HA,INSTAK(20),OUTSTAK(20),ENDCN,SHUTD,INTRRSP
7 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
8 COMMON /RMCOM/TA (63),STAK(20),0VRFLHA (8,20) ,OVRFLTA (63,8,20),US1
9 COMMON /RMCOM/IABN(20),SMHA,SMTA(63),SSM(8),MC,LFN,ABT,ACT,TLC
10

11 HA=OSHDR
12 CALL NSTORE(HA,L"ABHADR",ACN)
13 TA(1)=" INPUT PLS"
14 TA(2)=0
15 SEN0=1
16 RETURN
17 END

Figure 7-2. Program Portion of RMV3 (Sheet 20 of 24)

60499500 R 7-21 •

SUBROUTINE SETUP 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05.11.38.17 PAGE 1

D0=-LONG/-0T,ARG=-C0MM0N/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PND/-ST,PL=5000
FTN5,I=RHV,L=0UTPUT,L0=S/-A.

1 SUBROUTINE SETUP

2
3 IMPLICIT INTEGER (A-Z)

4 COMMON /RHCON/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
5 COMMON /RMCOM/C0NEND,R0MARK,ACN,ABN(20),SM(20),ABL(2O),ABHIBU,US
6 COMMON /RMCOM/NB(20),HA,INSTAK(20),0UTSTAK(20),ENDCN,SHUTD,INTRRSP
7 COMMON /RMCOM/INTRCHR,CHANRST,CHANCLR
8 COMMON /RMC0M/TA(63),STAK(20),0VRFLHA(8,20),0VRFLTA(63,8,20),US1
9 COMMON /RMC0M/IABN(20),SMHA,SMTA<63),SSMC8),MC,LFN,ABT,ACT,TLC

10
11

12 C SET OUTGOING SUPERVISORY MESSAGE CONSTANTS
13
14 CONEND=NFETCH(0,L"CONEND")
15 ROMARK=NFETCHCO,L"ROMARK">
16 INTRRSP=NFETCH(0,L"INTRRSP")
17
18
19 C BUILD A BRANCHING TABLE FOR INCOMING SUPERVISORY
20 C MESSAGES (NOTE THAT THIS TABLE IS USED IN A MANNER
21 C THAT PERMITS EXPANSION)
22

23 SM(1)=NFETCH(0,L"FCACK")
24 SN(2)=NFETCH(0,L"C0NREQ")
25 SM(3)=NFETCH(0,L"FCINIT")
26 SM(4>=NFETCH(0,L"INTRUSR")
27 SM(5)=NFETCH<0,L"FCINA")
28 SM(6)=NFETCH(0,L"C0NCB")
29 SM(7)=NFETCHC0,L"FCNAK")
30 SNC8)=NFETCH(0,L"ERRLGL">
31 SN<9)=NFETCHC0,L"H0P">
32 SMCI0>=NFETCH(0,L"CONEND">
33
34

35 C SET RESPONSE BIT FOR THE CON/END /N MESSAGE
36
37 SM(10)=SM(10) .OR.O"100"
38 SM(11)=NFETCH(0,L"SHUINS")
39 SM(12)=NFETCH<0,L"BIMARK")
40 SM<13>=999
41

42
43 C BUILD A BRANCHING TABLE FOR HOST OPERATOR COMMANDS
44
45 SSM(1)=NFETCH<0,L"H0PDB")
46 SSH(2)^FETCH(0,L"HOPDE")
47 SSH(3)=NFETCH(0,L"H0PDU")
48 SSM(4)=NFETCH(0,L"H0PN0TR")
49 SSM(5)=NFETCH(0,L"H0PTRCE">
50 SSH(6)=NFETCH(0,L"H0PREL")
51 SSH(7)=NFETCH<0,L"H0PRS")
52

53 RETURN
54 END

Figure 7-2. Program Portion of RMV3 (Sheet 21 of 24)

7-22 60499500 R

SUBROUTINE PACK 74/74 OPT=0,ROUND= A/ S/ M/-D,H)S FTN 5.1+599 83/08/05. 11.38.17 PAGE 1

D0=- LONG/-OT,ARG=-COMNON/-FIXED,CS= USER/-FIXED,DB=-T8/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5 ,I=RMV,L=OUTPUT,LO=S/-A.

1

2
3

SUBROUTINE PACK (SEND)

IMPLICIT INTEGER (A-Z)

4 COMMON /RMC0M/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
5 COMMON /RMCOM/CONEND,ROMARK,ACN,ABN(20),SM(20),ABL(20),ABHIBU,US
6 COMMON /RMC0M/NB(2O),HA,INSTAK(20),OUTSTAK(20),ENDCN,SHUTD,INTRRSP
7 COMMON /RMCOH/INTRCHR,CHANRST,CHANCLR
8 COMMON /RMC0M/TA(63),STAK (20) ,OVRFLHA(8,20),OVRFLTA (63,8,20) ,US1
9
10

11

COMMON /RMCOH/IABN(20),SMHA,SMTA(63),SSM(8),NC,LFN,ABT,ACT,TLC

12 C CREATE HEADER WORD TO ECHO INPUT AS OUTPUT
13

14 HA =(HA .AND. 0"77777777777774007777") + 0"1"
15
16
17 C CHANGE APPLICATION BLOCK TYPE TO 1

18 IF (ABT.EQ.2) CALL NSTORE (HA,L"ABHABT",1

)

19 IF (ABT.EQ.2) THEN
1 20 LASTBLK=1
1 21 ELSE
1 22 LASTBLK=0
1 23 END IF
1 24
1 25

1 26 C INHIBIT FIRST CHARACTER AS A FORMAT EFFECTOR
1 27

28 CALL NSTORE (HA,L"ABHNFE",1)
29
30
31 C ECHO INPUT AS OUTPUT, AFTER ADDING A US TERMINATOR
32
33 FUL«D=TLC/5
34 FWP1=FULWD+1
35 XTRA=12*(TLC - 5*FULyD)
36 TLC=TLC + 1

37 CALL NSTORE (HA,L"ABHTLC",TLC)
38 IF (XTRA.EQ.O) THEN

1 39 TA(FWP1)=US
1 40 ELSE
1 41 XXX=SHIFT0JS1,-XTRA)
1 42 VYY=5SHIFTCUS,-XTRA)
1 43

1 44
1 45 C ZERO OUT REMAINDER OF WORD AND ADD UNIT SEPARATOR CHARACTER TO END OF BLOCK
1 46
1 47 TA(FHP1)=TA(FWP1) .AND. XXX .OR. YYY
1 48 END IF
1 49

50 SEND=1
51 RETURN
52 END

Figure 7-2. Program Portion of RHV3 (Sheet 22 of 24)

60499500 R 7-23

SUBROUTINE SHUTDN 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05.11.38.17 PAGE 1

DO=- LONG/-OT ,ARG=-COMMON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PHD/-ST,PL=5000

FTN5 ,I=RMV,L=OUTPUT,LO=S/-A.

1

2
3

SUBROUTINE SHUTDN

IMPLICIT INTEGER (A-Z)

4 COMMON /RMC0H/K(20),LASTBLK,I,S,NSUP,SMHDR,DSHDR,DSHDR1,NACN(20)
5 COMMON /RMCOH/CONEND,ROMARK,ACN,ABN<20),SM(20),ABL(20),ABHIBU,US
6 COMMON /RMCON/NB(20),HA,INSTAK (20) ,OUTSTAK (20) ,ENDCN,SHUTD,INTRRSP

7 COMMON /RMCOH/INTRCHR,CHANRST,CHANCLR

8 COMMON /RMCOH/TA(63),STAK(20),OVRFLHA(8,20),OVRFLTA(63,8,20),US1
9 COMMON /RMC0N/IABN(20),SMHA,SNTA(63),SSH(8),MC,LFN,ABT,ACT,TLC

10
11

12 C CLEANUP ALL CONNECTIONS BEFORE ENDING NETWORK ACCESS

13
14 666 SMTA(1)=SMTA(2)=0
15 CALL NSTORE (SMTA,L"PFCSFC",CONEND

)

16 CALL NSTORE (SHTA,L"RCH ,0)
17
18
19 C PASS CONNECTION DIRECTLY TO IAF WITHOUT DIALOG

20
21 CALL NSTORE (SMTA,L"CONANM",R"IAF ")

22 SMHA=SMHDR + O'T "

23 DO 555 J=1,20
24 IF (NACN(J).EQ.D THEN

1 25 CALL NSTORE (SMTA,L"CONACN",J)

1 26 MACN(J)=0
1 27 CALL NETPUT (SMHA,SNTA)
1 28 END IF

29 555 CONTINUE
30
31

32 C FETCH ALL QUEUED SUPERVISORY MESSAGES TO AVOID AN APPLICATION
33 C FAILED MESSAGE TO THE DEVICE OPERATOR AFTER DISCONNECTION

34

35 97 CALL NETWAIT(5,0)
36 SHUTDUN=1

37 SYNC=0
38 CALL LOOKSH (SHUTDWN,L,SYNC)
39 IF (L.EQ.3) GO TO 666
40
41

42

IF (L.LE.12) GO TO 97

43 C FINISH WRITING DEBUG LOG AND STATISTICAL FILES

44
45 CALL NETOFF
46
47 STOP 333
48 END

Figure 7-2. Prograa Portion of RMV3 (Sheet 23 of 24)

• 7-24 60499500 R

1

2

3
4

5

6
7

8
9
10
11

12
13
14
15
16

SUBROUTINE REPREV 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+599 83/08/05. 11.38.17 PAGE 1

DO=-LONG/-OT,ARG=-COMHON/-FIXED,CS= USER/-FIXED,DB=-TB/-SB/-SL/ ER/-ID/-PMD/-ST,PL=5000
FTN5,I=RMV,L=0UTPUT,L0=S/-A.

SUBROUTINE REPREV (IXCHNG,IFLAG,IFLDLN)

C THIS SUBROUTINE SALVAGES THE DEBUG AND STATISTICAL FILE ENTRIES BY
C CALLING THE AIP ROUTINE NETOFF TO FLUSH BUFFERS IN CASE THE
C APPLICATION PROGRAM IS ABORTED DURING EXECUTION

DIMENSION IXCHNGO 7) ,IFLDLN<0"50000">
WLA6=1

CALL NETOFF
STOP 10

ENTRY CHKSUN
END

Figure 7-2. Program Portion of RNV3 (Sheet 24 of 24)

RMV2 VER3

INPUT PLS Prompt to operator from RNV2 for first input.

User-break
user-break

-1

-2
or Entered by terminal operator.

BREAK n RHV2 response to break entries.

INPUT PLS Prompt for next input.

BYPASSED RMV2 response to INTR/USR/R supervisory message.

TINE OUT RNV2 output documenting an inactive connection; this is followed by disconnection
from RNV2 for subsequent terminal operator dialog with NVF or disconnection from
the host.

INPUT PLS RWV2 prompt for next input.

SHUTD Terminal operator entry, causes normal connection termination for this terminal
and for all other connected terminals. Next terminal operator dialog is with IAF,
if that program is available.

INPUT PLS RNV2 prompt for next input.

ENDCN Terminal operator entry, causes normal connection termination for this terminal.
Next terminal operator dialog is with IAF, if that program is available.

INPUT PLS RNV2 prompt for input.

Any characters
other than SHUTD or

ENDCN, up to 314

Terminal operator entry.

Any characters
other than SHUTD or

ENDCN, up to 314

RMV2 echoed output, single-spaced.

INPUT PLS RMV2 prompt for next entry.

Figure 7-3. Possible Dialogs Supported by Sample FORTRAN Program

60499500 R 7-25 •

RMV2 L06 FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00001

11.38.26.000 NETON (024677) ANAHE = RHV2 DATE = 83/08/05

NSUP ADDR = 000140 HINACN =00001 MAXACN =00020
NSG NO. 000001

11.38.53.498 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0010
NSG NO. 000002

001 630000001600200 30600000000130001000 CONREB C

002 51C75F0ADB45O18 24343537025555050030 T124B E X UP-4P

003 0000000000006EA 00000000000000003352 0) N
004 0000000002DD40B 00000000000013352013 K2PK -T
005 xxxxxxx6D840011 xxxxxxxxxxx555000021 xxxxx Q M B C9

006 xxxxxxxEl 880037 xxxxxxxxxxxxxx000067 xxxxxxx ft 16* 7
007 000FF8FFFFFFFFF 00007770777777777777 ;';;;;;; X

008 FFF3400001FFFFF 77771500000007777777 ;;H G;;; 4

009 0000O0OO0000F6F 00000000000000007557 . V
010 7C014034460D1C1 37000500150430150701 4 E HDXHGA W3 DMA

11.38.53.508 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

NSG NO. 000003

001 634000001 0000C1 30640000000100000301 CONREQN C9

11.38.54.007 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

NSG NO. 000004

001 830700001000000 40603400000100000000 FCINIT

11.38.54.010 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

NS6 NO. 000005

001 834700001000000 40643400000100000000 FCINITN G

11.38.54.011 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000065 ACT =04 STATUS = 00000000 TLC = 0020

NSG NO. 000006

001 71235676D58549E 34221526355526052236 1RHV2 VER3 0#VVU I

002 000000000000000 00000000000000000000 a

11.38.54.011 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000066 ACT =04 STATUS = 00000000 TLC = 0020

NSG NO. 000007

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1

002 000000000000000 00000000000000000000

11.38.54.505 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

NSG NO. 000008

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 1 of 13)

• 7-26 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00002

001 830200001001040 40601000000100010100 FCACK

11.38.54.509 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000009

001 830200001001080 40601000000100010200 FCACK

11.39.10.797 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLHAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0047

HSG NO. 000010

001 05406806502006E 01240150014500400156 ATA/A+ 5A, THE N
002 065078074020063 01450170016400400143 A+A'A" 5A8 EXT C
003 068061072061063 01500141016201410143 A/A6ADA6A8 HARAC
004 074065072020069 01640145016200400151 A"A+A] 5A(TER I

005 073020061020075 01630040014100400165 AX 5A6 5A S A U
006 073O65072O2D062 01630145016200550142 AXA+A3 A7 SER-B
007 072065061 06B02D 01620145014101530055 A3A+A6AS REAK-
008 031020063068061 00610040014301500141 C 5A8A/A6 1 CHA
009 072061063074065 01620141014301640145 A3A6A8A"A+ RACTE
010 O72O2EOO00O0OO0 01620056000000000000 A3 , R.

11.39.10.804 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000067 ACT =03 STATUS = 00001000 TLC = 0048

MSG NO. 000011

001 05406806502006E 01240150014500400156 ATA/A+ 5A, THE N
002 065078074020063 01450170016400400143 A+A'A" 5A8 EXT C
003 068061072061063 01500141016201410143 A/A6ADA6A8 HARAC
004 074065072020069 01640145016200400151 A"A+A3 5A(TER I

005 073020061020075 01630040014100400165 AX 5A6 5A S A U
006 07306507202D062 01630145016200550142 AXA+A] A7 SER-B
007 072065061 06B02D 01620145014101530055 A3A+A6AS REAK-
008 031020063068061 00610040014301500141 C 5A8A/A6 1 CHA
009 072061063074065 01620141014301640145 A1A6A8A"A+ RACTE
010 07202E01 FOOOOOO 01620056003700000000 A] , 4 R.

11.39.10.805 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000068 ACT =04 STATUS = 00000000 TLC = 0020

HSG NO. 000012

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 00000000000000000000

11.39.11.844 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

HSG NO. 000013

001 830200001 001 OCO 40601000000100010300 FCACK

11.39.11.850 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063 MSG NO. 000014

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 2 of 13)

60499500 R 7-27

RHV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00003

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001100 40601000000100010400 FCACK

11.39.15.953 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLNAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 HS6 NO. 000015

001 800003001000000 40000003000100000000 INTRUSR

11.39.15.957 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

NSG NO. 000016

001 800100001000000 40000400000100000000 INTRRSP

11.39.16.011 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLNAX
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

=0010 MSG NO. 000017

001 CAOOOOOOOOOOOOO 62400000000000000000 BIMARK J

11.39.16.043 NETPUT (031655) HA =000315 TA =000374
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

NSG NO. 000018

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK K

11.39.16.043 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000069 ACT =04 STATUS = 00000000 TLC = 0020

NSG NO. 000019

001 B4248504B85CB6D 55022205011355345555 BREAK 1 4$; 6
002 000000000000000 00000000000000000000 P

11.39.16.043 NETPUT (031655) HA =000315 TA =000374

ABT =02 ADR =0001 ABN =000070 ACT =04 STATUS = 00000000 TLC = 0020
NSG NO. 000020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1

002 000000000000000 00000000000000000000

11.39.17.006 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLNAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 NSG NO. 000021

001 830200001000000 40601000000100000000 FCACK

11.39.17.010 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLNAX

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

=0063 NSG NO. 000022

001 830200001001140 40601000000100010500 FCACK

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 3 of 13)

7-28 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

11.39.17.014 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001180 40601000000100010600 FCACK

NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLHAX =0010
=000000 ACT =03 STATUS = 00000000 TLC = 0047

01240150014500400156
01450170016400400143
01500U1016201410143
01640145016200400151
01630040014100400165
01630145016200550142
01620145014101530055
0062004001 4301 5001 41

01620141014301640145
01 620056000000000000

1.39.32 .490 NETG
ABT =02 ADR =0001 ABN

001 05406806502006E
002 065078074020063
003 068061072061063
004 074065072020069
005 073020061020075
006 07306507202D062
007 072065061 06B02D
008 032020063068061
009 072061063074065
010 07202EO0OOOOO0O

83/08/05
PAGE 00004

MSG NO. 000023

MSG NO. 000024

11.39.32.502 NETPUT (031655) HA =000315
ABT =01 ADR =0001 ABN =000071 ACT =03

001 05406806502006E
002 065078074020063
003 068061072061063
004 074065072020069
005 073020061020075
006 07306507202D062
007 072065061 06B02D
008 032020063068061
009 072061063074065
010 07202E01F000000

01240150014500400156
01450170016400400143
01500141016201410143
01640145016200400151
01630040014100400165
01630145016200550142
01620145014101530055
00620040014301500141
01620141014301640145
01 620056003700000000

ATA/A+ 5A, THE N
A+A'A" 5A8 EXT C

A/A6ADA6A8 HARAC
A"A+AD 5A(TER I

AX 5A6 5A S A U
AXA+AD AT SER-B
A3A+A6A* REAK-
1 5A8A/A6 2 CHA

A3A6A8A"A+ RACTE
A3 , R.

S15 TA =000374
US = 00001000 TLC

ATA/A+ 5A, THE N

A+A'A" 5A8 EXT C

A/A6ADA6A8 HARAC
A"A+AD 5A(TER I

AX 5A6 5A S A U

AXA+AD A7 SER-B

A3A+A6AS REAK-
1 5A8A/A6 2 CHA

A3A6A8A-A+ RACTE
AD , 4 R.

NSG NO. 000025
0048

11.39.32.502 NETPUT (031655) HA =000315
ABT =02 ADR =0001 ABN =000072 ACT =04 STATUS

TA =000374
00000000 TLC = 0020

NSG NO. 000026

001 B49390554B50313 55111620252455201423
002 000000000000000 00000000000000000000

INPUT PLS UKP1

11.39.34.047 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001 0011 CO 40601000000100010700 FCACK

11.39.34.067
ABT =03 ADR

NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
=0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000027

MSG NO. 000028

001 830200001001200 40601000000100011000 FCACK

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 4 of 13)

60499500 R 7-29

RHV2 L06 FILE OUTPUT
DATE RECORDED - 83/08/05

11.39.36.687 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800004001000000 40000004000100000000 INTRUSR

11.39.36.740 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800100001000000 40000400000100000000 INTRRSP

11.39.36.811 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLHAX =0010
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CAOOO00901DE0O0 62400000022007360000 BIMARK J

11.39.36.822 NETPUT (031655) HA =000315 TA =000374
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROHARK K

11.39.36.822 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000073 ACT =04 STATUS = 00000000 TLC = 0020

001 B4248504BB5DB6D 55022205011355355555 BREAK 2

002 000000000000000 00000000000000000000
4$;36
P

11.39.36.823 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000074 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1

002 000000000000000 OOOOOOOOOOOOOOOOOOOO

11.39.37.707 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

11.39.37.711 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001240 40601000000100011100 FCACK $

11.39.37.715 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

83/08/05
PAGE 00005

HSG NO. 000029

HSG NO. 000030

HS6 NO. 000031

HSG NO. 000032

HSG NO. 000033

HSG NO. 000034

HSG NO. 000035

HSG NO. 000036

HSG NO. 000037

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 5 of 13)

• 7-30 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 85/08/05

83/08/05
PAGE 00006

001 830200001001280 40601000000100011200 FCACK

11.39.51.219 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0036

NSG NO. 000038

001 05406806502006E
002 065078074020065
003 06E074072079020
004 069073020061020
005 062072065061 06B
006 02006306F06E064
007 06907406906F06E
008 O2EO00OO00O00O0

01240150014500400156
01450170016400400145
01560164016201710040
01 51 01 63004001 41 0040
01420162014501410153
00400143015701560144
01510164015101570156
00560000000000000000

ATA/A+ 5A,
A+A'A" 5A+
A,A"A3A? 5

A(AX 5A6 5

A7A3A+A6AS
5A8A.A,A9

A(A"A(A.A,

THE N
EXT E
NTRY
IS A

BREAK
COND

IT ION

11.39.51.225 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000075 ACT =03 STATUS = 00001000 TLC = 0037

NSG NO. 000039

001 05406806502006E
002 065078074020065
003 06E074072079020
004 069073020061020
005 062072065061 06B
006 02006306F06E064
007 06907406906F06E
008 02E01 FOOOOOOOOO

01240150014500400156
01450170016400400145
01560164016201710040
01 51 01 63004001 41 0040
01420162014501410153
004001 4301 5701 5601 44
01510164015101570156
00560037000000000000

ATA/A+ 5A, THE N
A+A'A" 5A+ EXT E

a,a"a:a? 5 NTRY
A(A% 5A6 5 IS A
A7A3A+A6AS BREAK
5A8A.A,A9 COND

A(A"A(A.A, ITION
, 4 m

11.39.51.225 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000076 ACT =04 STATUS = 00000000 TLC = 0020

NSG NO. 000040

001 B49390554B50313 55111620252455201423
002 000000000000000 00000000000000000000

INPUT PLS UKP1

11.39.51.747 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLNAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001 001 2C0 40601000000100011300 FCACK ,

11.39.51.751 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001300 40601000000100011400 FCACK

11.39.56.410 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800003001000000 40000003000100000000 INTRUSR

MSG NO. 000041

NSG NO. 000042

MSG NO. 000043

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 6 of 13)

60499500 R 7-31 •

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

11.39.56.414 NETPUT (031655) HA =024544 TA =024545

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800100001000000 40000400000100000000 INTRRSP

11.39.56.464 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010

ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CAOOOOOOOOOOOOO 62400000000000000000 BIMARK

11.39.56.478 NETPUT (031655) HA =000315

ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS
TA =000374
00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK

11.39.56.478 NETPUT (031655) HA =000315
ABT =01 ADR =0001 ABN =000077 ACT =04 STATUS

TA =000374
00000000 TLC = 0020

001 B4248504B85CB6D 55022205011355345555
002 000000000000000 OOOOOOOOOOOOOOOOOOOO

BREAK 1 4$
P

11.39.56.478 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000078 ACT =04 STATUS = 00000000 TLC 0020

001 B49390554B50313 55111620252455201423
002 000000000000000 OOOOOOOOOOOOOOOOOOOO

INPUT PLS UKP1

11.39.56.960 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

11.39.56.964 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001340 40601000000100011500 FCACK 4

11.39.56.992 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001380 40601000000100011600 FCACK 8

11.39.57.021 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0000

83/08/05
PAGE 00007

MSG NO. 000044

MSG NO. 000045

MSG NO. 000046

MSG NO. 000047

MSG NO. 000048

MSG NO. 000049

MSG NO. 000050

MSG NO. 000051

MSG NO. 000052

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 7 of 13)

• 7-32 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

83/08/05
PAGE 00008

11.39.57.027 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000079 ACT =03 STATUS = 00001000 TLC = 0001

NSG NO. 000053

001 OIFOOOOOOOOOOOO 00370000000000000000 4

11.39.57.028 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000080 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000054

001 B49390554B50313 55111620252455201423 INPUT PLS 4
002 000000000000000 00000000000000000000

UKP1

11.39.57.501 NETGETL (031354) ALN =0000 HA =024544
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000

TA =024545 TLMAX
TLC = 0001

=0063 MSG NO. 000055

001 830200001 001 3C0 40601000000100011700 FCACK <

11.39.57.505 NETGETL (031354) ALN =0000 HA =024544
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000

TA =024545 TLMAX
TLC = 0001

=0063 MSG NO. 000056

001 830200001001400 40601000000100012000 FCACK a

11.40.12.998 NETGETL (031354) ALN =0001 HA =000315
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000

TA =000374 TLMAX
TLC = 0005

=0010 MSG NO. 000057

001 04504E04404304E 01050116010401030116 AEANADACAN ENDCN

11.40.13.005 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

MSG NO. 000058

001 630600001000000 30603000000100000000 CONEND C
002 2411ADB6DB40000 11010655555555000000 IAF t\ CM4

11.40.13.064 NETGETL (031354) ALN =0000 HA =024544
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000

TA =024545 TLMAX
TLC = 0001

=0063 MSG NO. 000059

001 634600001000000 30643000000100000000 CONENDN CF

11.40.29.864 NETGETL (031354) ALN =0000 HA =024544
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000

TA =024545 TLMAX
TLC = 0010

=0063 MSG NO. 000060

001 630000001600200 30600000000130001000 CONREfl C

002 51C75F0ADB45018 24343537025555050030 T124B EX
003 0000000000006EA 00000000000000003352 0)
004 0000000002DD40B 00000000000013352013 K2PK
005 xxxxxxx6DB40011 xxxxxxxxxx5555000021 xxxxx Q M
006 xxxxxxxEl 880037 xxxxxxxxxxxxxx000067 xxxxxxx &

UP-4P
N

-T

b ca

16A 7

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 8 of 13)

60499500 R 7-33 •

RHV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

007 000FF8FFFFFFFFF 00007770777777777777 ;';;;;;; X

008 FFF3400001FFFFF 77771500000007777777 ;;H 6;;; _4
009 0O0O0O000O00F6F 00000000000000007557 . V
010 7C014034460D1C1 37000500150430150701 4 E HDXHGA U3 D88A

11.40.29.870 NETPUT (031655) HA =024544 TA =024545

AST =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634000001 0000C1 30640000000100000301 CONREQN ca

11.40.30.922 NETGETL <031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830700001000000 40603400000100000000 FCINIT

11.40.30.925 NETPUT <031655) HA =024544 TA =024545

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC

001 834700001000000 40643400000100000000 FCINITN G

0001

11.40.30.925 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000081 ACT =04 STATUS = 00000000 TLC = 0020

001 71235676D58549E 34221526355526052236 1RHV2 VER3 QffVVU I

002 000000000000000 00000000000000000000 a

11.40.30.925 NETPUT (031655) HA =000315 TA =000374

ABT =02 ADR =0001 ABN =000082 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423
002 000000000000000 00000000000000000000

INPUT PLS 4 UKP1

11.40.31.468 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001440 40601000000100012100 FCACK D

11.40.31.473 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001480 40601000000100012200 FCACK H

11.41.39.064 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLHAX =0010

ABT =00 ADR =0001 ABN =000000 ACT =02 STATUS = 10000000 TLC =0100

83/08/05
PAGE 00009

HSG NO. 000061

HSG NO. 000062

HSG NO. 000063

HSG NO. 000064

HSG NO. 000065

HSG NO. 000066

HSG NO. 000067

HSG NO. 000068

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 9 of 13)

• 7-34 60499500 R

RNV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

11.41.39.077 NETGET (031340) ACN =0001 HA =000315 TA =000374 TLHAX =0063
ABT =01 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC =0100

83/08/05
PAGE 00010

NSG NO. 000069

001 054068069073020
002 069073020061020
003 074065073074020
004 06F066020074068
005 065020071075065
006 07506906E067020
007 06306F064065020
008 06606F07202006D
009 065073073061067
010 06507302006F066
011 02006D06F072065
012 020074068061 06E
013 02006F06E065020
014 06E06507407706F
015 07206B020064061
016 074061 02006206C
017 06F06306B03B020
018 074068069073020
019 06906E070075074
020 02007306806F075

01240150015101630040
01510163004001410040
01640145016301640040
01 5701 46004001 6401 50
01450040016101650145
01650151015601470040
01430157014401450040
01460157016200400155
01450163016301410147
01450163004001570146
00400155015701620145
00400164015001410156
00400157015601450040
01560145016401670157
01620153004001440141
01640141004001420154
01570143015300730040
01640150015101630040
01510156016001650164
00400163015001570165

ATA/ACAZ 5 THIS
A(AX 5A6 5 IS A
A"A+AXA" 5 TEST
A.A- 5A"A/ OF TH
A+ 5ACA A+ E QUE
A A(A,A* 5 UING
ABA.A9A+ 5 CODE
A-A.A3 5A FOR M
A+AXAXA6A* ESSAG
A+AX 5A.A- ES OF

5A A.A3A+ MORE
5A"A/A6A, THAN
5A.A,A+ 5 ONE

A,A+A"A&A. NETUO
A3A$ 5A9A6 RK DA
A"A6 5A7A= TA BL
A.A8AS > 5 OCK;
A"A/A(AX 5 THIS
A(A,A#A A" INPUT
5AXA/A.A SHOU

11.41.39.083 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000083 ACT =03 STATUS = 00001000 TLC =0101

NSG NO. 000070

001 054068069073020
002 069073020061020
003 074065073074020
004 06F066020074068
005 065020071075065
006 07506906E067020
007 06306F064065020
008 06606F07202006D
009 065073073061067
010 06507302006F066
011 02006D06F072065
012 020074068061 06E
013 02006F06E065020
014 06E06507407706F
015 07206B020064061
016 074061 02006206C
01

7

06F06306B03B020
018 074068069073020
019 06906E070075074
020 02007306806F075
021 01 FOOOOOOOOOOOO

01240150015101630040
01510163004001410040
01640145016301640040
01 5701 46004001 6401 50
01450040016101650145
01650151015601470040
01430157014401450040
01460157016200400155
01450163016301410147
01450163004001570146
00400155015701620145
00400164015001410156
00400157015601450040
01560145016401670157
01620153004001440141
01640141004001420154
01570143015300730040
01640150015101630040
01510156016001650164
00400163015001570165
00370000000000000000

ATA/ACAX 5 THIS
A (AX 5A6 5 IS A
A"A+AXA" 5 TEST
A.A- 5A"A/ OF TH
A+ 5ACA A+ E QUE
A A(A,A* 5 UING
A"8A.A9A+ 5 CODE
A-A.A3 5A FOR M
A+AXAXA6A* ESSAG
A+AX 5A.A- ES OF
5A A.A3A+ MORE
5A"A/A6A, THAN
5A.A,A+ 5 ONE

A,A+A"A&A. NETWO
ADAS 5A9A6 RK DA
A"A6 5A7A= TA BL
A.A8AS > 5 OCK;
A"A/A(AX 5 THIS
A(A,A#A A" INPUT
5AXA/A.A SHOU
4

-

11.41.42.759 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

NSG NO. 000071

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 10 of 13)

60499500 R 7-35 •

RNV2 LOG FILE OUTPUT
DATE RECORDED - 83/08/05

001 830200001 001 4C0 40601000000100012300 FCACK

11.41.42.791 METGETL (031354) ALN =0001 HA =000315 TA =000374 TLHAX =0010

ABT =00 ADR =0001 ABN =000000 ACT =02 STATUS = 10010000 TLC = 0070

11.41.42.823 METGET (031340) ACN =0001 HA =000315 TA =000374 TLHAX =0063

ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00010000 TLC = 0070

83/08/05
PAGE 00011

MSG NO. 000072

MSG NO. 000073

001

002

06C064020067065
06E065072061074

003 065020073065076
004 065072061 06C020
005 06206C06F06306B
006 07302006F066020
007 06906E070075074
008 020061 06E064020
009 06F075074070075
010 074020061 06E064

Oil 020062065020070
012 07206F070065072
013 06C079020065063
014 06806F06506402E

01540144004001470145
01560145016201410164
01450040016301450166
01450162014101540040
01420154015701430153
01630040015701460040
01510156016001650164
00400141015601440040
01570165016401600165
01640040014101560144
004001 4201 45004001 60
01620157016001450162
01540171004001450143
01500157014501440056

A=A9 5A*A+ LD GE

A,A+A3A6A" NERAT
A+ 5AXA+A! E SEV

A+A3A6A= 5 ERAL

A7A=A.A8A$ BLOCK
A% 5A.A- 5 S OF

A(A,A#A A" INPUT
5A6A,A9~ 5 AND

A. A A"AAA OUTPU

A" 5A6A,A9 T AND
5A7A+ 5A# BE P

A3A.A#A+A3 ROPER

A=A? 5A+A8 LY EC

A/A.A+A9 , HOED.

11.41.42.843 NETPUT (031655) HA =000315 TA =000374
ABT =01 ADR =0001 ABN =000084 ACT =03 STATUS = 00001000 TLC = 0071

HSG NO. 000074

001 06C064020067065
002 06E065072061074
003 065020073065076
004 065072061 06C020
005 06206C06F06306B
006 07302006F066020
007 06906E070075074
008 020061 06E064020
009 06F075074070075
010 074020061 06E064
011 020062065020070
012 07206F070065072
013 06C079020065063
014 06806F06506402E
015 01 FOOOOOOOOOOOO

01540144004001470145
01560145016201410164
01450040016301450166
01450162014101540040
01420154015701430153
01630040015701460040
01510156016001650164
00400141015601440040
01570165016401600165
01640040014101560144
00400142014500400160
01620157016001450162
01540171004001450143
01500157014501440056
00370000000000000000

A=A9 5A*A+ LD GE
A,A+A3A6A" NERAT

A+ 5AXA+A! E SEV

A+A3A6A= 5 ERAL
A7A=A.A8A$ BLOCK
AX 5A.A- 5 S OF

A(A,A#A A" INPUT
5A6A,A9" 5 AND

A. A A"ASA OUTPU
A" 5A6A,A9 T AND
5A7A+ 5A# BE P

A3A.A#A+A3 ROPER
A=A? 5A+A8 LY EC

A/A.A+A9 , HOED.

4

11.41.42.843 NETPUT (031655) HA =000315 TA =000374

ABT =02 ADR =0001 ABN =000085 ACT =04 STATUS = 00000000 TLC = 0020

MSG NO. 000075

001 B49390554B50313 55111620252455201423
002 000000000000000 00000000000000000000

INPUT PLS UKP1

11.41.43.280 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLHAX =0063 MSG NO. 000076

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 11 of 13)

7-36 60499500 R

RNV2 LOG FILE OUTPUT 83/08/05
DATE RECORDED - 83/08/05 PAGE 00012

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001500 40601000000100012400 FCACK P

11.41.43.284 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063 HSG NO. 000077
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001540 40601000000100012500 FCACK T

11.42.12.987 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010 HSG NO. 000078
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000010 TLC = 0037

001 04E06F077020074 01160157016700400164 ANA. AS 5A" NOW T
002 06F020074065073 01570040016401450163 A. 5A"A+AZ TES
003 074020074068065 01640040016401500145 A" 5A"A/A+ T THE
004 02006906E070075 00400151015601600165 5A(A,A#A INPU
005 074020063061 06E 01640040014301410156 A" 5A8A6A7 T CAN
006 06306506C06906E 01430145015401510156 A8A+A=A(A, CELIN
007 06702006306F064 01470040014301570144 A* 5A8A.A9 G COD
008 065040000000000 01450100000000000000 A+A E8

11.42.13.003 NETPUT (031655) HA =000315 TA =000374
ABT =02 ADR =0001 ABN =000086 ACT =04 STATUS = 00000000 TLC = 0020

001 B49390554B50313 55111620252455201423 INPUT PLS 4 UKP1
002 000000000000000 00000000000000000000

11.42.14.014 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX =0063
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001001580 40601000000100012600 FCACK X

11.42.18.844 NETGETL (031354) ALN =0001 HA =000315 TA =000374 TLMAX =0010
ABT =02 ADR =0001 ABN =000000 ACT =03 STATUS = 00000000 TLC = 0006

001 053048055054044 01230110012501240104 ASAHAUATAD SHUTD
002 O4EO000O00O0O00 01160000000000000000 AN N

11.42.18.860 NETPUT (031655) HA =024544 TA =024545
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

001 630600001000000 30603000000100000000 CONEND C
002 2411AOB6DB40000 11010655555555000000 IAF A CM4

11.42.18.927 NETGETL (031354) ALN =0000 HA =024544 TA =024545 TLMAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

MSG NO. 000079

AX =0063 MSG NO. 000080

(X =0010 MSG NO. 000081

MSG NO. 000082

X. =0063 MSG NO. 000083

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 12 of 13)

60499500 R 7-37

RMV2 L06 FILE OUTPUT 83/08/05
DATE RECORDED - 83/08/05 PAGE 00013

001 634600001000000 30643000000100000000 CONENDN CF

11.42.26.021 NETOFF (030077) DATE =83/08/05 HSG NO. 000084

Figure 7-4. Debug Log File Listing for Sample FORTRAN Program (Sheet 13 of 13)

NAM STATISTICS GATHERIN6 STARTED
NETON DATE 83/08/05. TIME 11.38.26.

NAM STATISTICS GATHERIN6 TERMINATED
NETOFF DATE 83/08/05. TIME 11.42.26.

CPU TIME USED: 0.244 SEC

NUMBER OF PROCEDURE CALLS
NETGET 2
NETGETL 46
NETPUT 34
NETWAIT 47

NUMBER OF UORKLIST TRANSFER ATTEMPTS
SUCCESSFUL 64

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED

INPUT ABT=0 2
INPUT ABT=1 1

INPUT ABT=2 8
INPUT ABT=3 37
OUTPUT ABT=1 11

OUTPUT ABT=2 11

OUTPUT ABT=3 12

NUMBER OF ERRORS

Figure 7-5. Statistical File Listing for Sample FORTRAN Program

• 7-38 60499500 R

QUEUED TERMINAL RECORD MANAGER 8

The Queued Terminal Record Manager (QTRM) utility
package allows an application program to use NAM to
perform input and output to and from a device or
application in a way similar to the use of the CYBER
Record Manager to perform input and output to and
from mass storage. This section describes the
interface between QTRM and an application program.

NAM allows an application program to communicate
with another application program the same as the
program does with a device. The program then has a
connection with a terminal or an application. When
the term connection is used in this section, it
refers to the general case and includes both device-
to-application connections and application-to-
application connections.

An application program interface with QTRM has two
parts:

A formal data structure, called the network
information table, is used as a communication
area.

A set of subroutines is used by the application
program to perform network actions.

NETWORK INFORMATION TABLE
An application program uses the network information
table to communicate with QTRM and with the network
software through QTRM. The application program
creates the network information table within its
own field length. If the program uses overlays,
the network information table must be created with-
in the main (0, level) overlay. The length of
the network information table varies according to
the number of connections the application program
supports.

The network information table has the format shown
in figure 8-1. This table is defined so that its
first word begins at a word boundary. In a FORTRAN
program, the table would be created as one or more
one-dimensional arrays. In a COBOL program, the
table would be created as a Data Division item
beginning with an 01 level description, preferably
in the Working Storage section.

The network information table has two consecutive
parts. The first portion is a 10-word entry global
to program use of the network. The second portion
consists of 10-word entries unique to each con-
nection serviced by the application program.

The global portion of the network information table
contains a few fields that only QTRM writes for the
application program to read. Most of the fields in
this portion are read or written by either QTRM or
the application program.

The connection portion of the network information
table contains fields written by QTRM that should
be used by the application program as read-only
fields. Errors can result if the application pro-
gram writes in any of these fields.

The first 9 words of each 10-word entry in the
second portion of the table are maintained by QTRM
for each connection. Both QTRM and the application
program access a given 10-word entry using the
application connection number assigned by the net-
work to the connection. For example, if a device
or application is assigned to connection number 3,
QTRM writes all information concerning that device
or application into the third 10-word entry in the
connection portion of the network information table.
If the application program needs some information
concerning the device or application assigned to
connection number 5, it reads the fifth 10-word
entry in the connection portion of the network
information table. The connection number assigned
to the device or application is therefore an index-
ing integer that can be used to access the correct
10-word entry in the table, or other tables main-
tained by the application program to contain infor-
mation related to servicing the same device or
application.

The tenth word of the global portion and the tenth
word of each of the connection entries are not
accessed by QTRM. They are reserved for instal-
lation use.

The application program determines the number of
10-word entries in the second portion of the net-
work information table. One 10-word entry must
exist for each device or application the program is
written to service simultaneously. The application
program places the number of 10-word entries in the
first portion of the network information table so
that QTRM knows how many entries exist.

The application program does not need to provide a
10-word entry for each device or application serv-
iced cumulatively during a single program execution.
The network reassigns a connection number when a
device or application disconnects from the program,
so that several devices or applications can sequen-
tially use the same connection number at different
periods during a single program execution. For
example, if the program is intended to service eight
devices at the same time, it provides eight 10-word
entries. During a single execution, six different
devices might use each of those entries in succes-
sion, but each device uses only the entry assigned
to it while it communicates with the program.
Consequently, the program does not need 48 entries
to allow for the possibility.

60499500 R
8-1

59 53 47 35 29 17 11

Global Entry

for O.TRM
communication

net-info-table /Word
1

2

3

4

5

6

7

8

9

10

i Word

2

3

4

5

6

7

8

9

10

Entry for

connection 1

Entry for

connection n

(n=num-conns)

tsec-return-code I (6)

application-name C(7)
char-

set I (6)

num-conns
1(12)

NAM-supervisor-word

reserved for CDC

reserved for CDC

max-trans-size

1(12)

current-trans-

size 1(12)

sleep

I (6)

connection-

number 1(12) code I (61

abl-1
1(6)

next-application-name C(7)

requested-application-name C(7)

sub-system
code

return- int-msg

1(6)

xsleep 1(18)

destination-host C(3)

reserved for CDC

reserved for CDC

reserved for installation use

terminal-name-1 /application-name-1 C(7)

family-name-1 C(7)
dev-type page-length-1

user-name- 1 C(7)

current-abn-1

1(18)

acknowledged-abn-1

H18)

tclass-1

I (6)

I (6)

res

state-

1

1(6)

page-width-1

1(12)

1(12)

max-block-
size-l(12)

current-

abl-l(6)

reserved for CDC

upline-abh-1

downline-abh-1

reserved for CDC

reserved for CDC

reserved for installation use

Word
1 terminal-name-n/application-name-n tclass-n page-width-n

2 family-name-n
dev-type

I (6)
page-length-n

3 user-name-n res
max-block-

size-n

4 abl-n current-abn-n acknowledged-abn-n state-n res
current-

abl-n

5 reserved for CDC

6 upline-abh-n

7 downline-abh-n

8 reserved for CDC

9 reserved for CDC

10 reserved for installation use

Figure 8-1. Network Information Table Format (Sheet 1 of 10)

Read and

write portion,

occurs only

once

Read-only
portion,

repeated once

for each

connection

8-2 60499500 S

net-info-table

application-name

char-set

num-conns

The symbolic address of the entire network information table, used to identify
the table in a QTOPEN call. In a COBOL program, this address is the Data Divi-
sion descriptor for the level 01 data item containing level 02 or lower level
data items for all of the fields described in this figure. In a FORTRAN pro-
gram, this address is the name of a one-dimensional array.

This 42-bit field contains the application name used to identify the program
to the network, and by other application programs or terminal users to access the
program. The name contained in this field can be one to seven letters or digits,
beginning with a letter, and must be left-justified within the field
and blank-filled to the right; the name must be placed in the field before
calling QTOPEN. Changing the contents of this field after calling QTOPEN has
no effect. The name placed in this field is subject to the same restraints
as the aname parameter in a call to the AIP routine NETON, as described in
section 5.

This 6-bit field contains a binary integer to identify the character code set
and byte packing convention along with the mode of data used by the program
for all input and output through QTRH.

For input, specify any integer from the following list. Either place the code
value in the char-set field before calling QTOPEN, or allow QTOPEN to place
the default value of 4 in the char-set field if the application program does
not specify a code value.

1 A 60-bit character is in 60-bit word (allowed only for connections
to other applications in the same host).

2 8-bit ASCII codes are packed with 7.5 bytes per 60-bit word (every
two words contains 15 characters) and transmitted in normalized mode.

3 8-bit ASCII codes are packed with 5 bytes per 60-bit word (each char-
acter code is right-justified within a 12-bit byte and zero-filled
to the left) and transmitted in normalized mode.

4 6-bit display codes are packed with 10 bytes per 60-bit word (this
is the default value used by QTRH when no other legal value is speci-
fied).

Note that the char-set value at QTOPEN applies to all input from alL connec-
tions. When a char-set value of 1 is used, only connections to other appli-
cations should be made. Char-set values of 2 and 3 can be used for either
devices or applications.

After a call to QTOPEN is made, the char-set field is used to specify a value
that applies to output. The application program may change the contents any
time. The output is controlled by the char-set value outstanding when QTPUT
is called. No QTRH routine changes the contents after QTOPEN is completed.
In addition to the code values listed above for input, the following codes are
valid for output:

10 8-bit codes are packed with 7.5 bytes per 60-bit word and trans-
mitted in transparent mode.

11 8-bit codes are packed with 5 bytes per 60-bit word and trans-
mitted in transparent mode.

Use of the default value (display code) for output allows use of QTRH editing
features. Requirements on the Length and contents of the transmitted data are
described in section 2.

This field contains a 12-bit integer, 1 < num-conns < 4095, indicating how many
connections the application program can simultaneously support. Connections
are assigned numbers from 1 to num-conns; the value used for numconns should
not be greater than the number of 10-word entries provided in the network
information table. The network information table must be 10+00 X num-conns)
central memory words in length, regardless of whether the program references
words at the end of the table. The value must be placed in this field before the
call to QTOPEN. After the call to QTOPEN, changing the contents of the field has
no effect.

Figure 8-1. Network Information Table Format (Sheet 2 of 10)

60499500 S 8-3

NAM-supervi sor-word

sub return code

A-to-A

max-trans-size

Current-trans-size

This 60-bit field is used by QTRH and should be ignored by the application

program. The field contains the NETON call nsup parameter used by QTRM. (See

section 5.)

This 12-bit field contains the reason code returned in the CON/ACRCt/A supervisory

message. The field has meaning only when the return code field has the value 13.

The reason codes for the supervisory message are explained in section 3.

This 6-bit field contains an integer indicating whether the application pro-
gram supports application-to-application connections. These application-to-
application connections may be initiated by this or another application. This

field can contain the following:

Does not support application-to-application connections.

1 Supports application-to-application connections.

The value must be placed in this field before the QTOPEN. After the call to
QTOPEN, changing the contents of the field has no effect.

This 12-bit field contains a binary integer that indicates the extent of the
application program storage area from which data for a connection is sent or
into which data is written. The value used is specified in units determined
by the code value that is the char-set value at QTOPEN for input and current
char-set value for output, as follows:

If char-set = 1, one max-trans-size unit = 60 bits.

If char-set = 2 or 10, one max-trans-size unit = 8 bits.

If char-set =3 or 11, one max-trans-size unit = 12 bits.

If char-set = 4, one max-trans-size unit = 6 bits.

The value used in this field is subject to the following restrictions:

Max-trans-size must be less than the number of units that would occupy 410
central memory words.

Max-trans-size must be less than 2043 units.

Max-trans-size must be at least 11 units longer that the value in the
current-trans-size field, if char-set = 4.

Max-trans-size must be less than or equal to the number of units that can
be contained in the text area (working-storage area) used by the program.

Max-trans-size must be set to a value that can be contained exactly in a

multiple of central memory words, otherwise QTRM restricts the size of the
text area without warning the application to make the last character posi-
tion end on a word boundary.

The value must be placed in this field before any QTPUT or QTGET call, and can

be changed between calls as appropriate. This field performs a function com-
parable to the tlmax parameter in direct AIP routine calls, as described in

section 5.

This 12-bit field contains a binary integer that indicates how much of the
application program text area contains data meaningful for a given QTGET or

QTPUT call. The value used is specified in units determined by the code value
that is the char-set value at QTOPEN for input and current char-set value for
output, as follows:

If char-set = 1, one current-trans-size unit = 60 bits.

If char-set = 2 or 10, one current-trans-sire unit = 8 bits.

If char-set = 3 or 11, one current-trans-size unit = 12 bits.

If char-set = 4, one current-trans-size unit = 6 bits.

Figure 8-1. Network Information Table Format (Sheet 3 of 10)

8-4 60499500 S

sleep

connect! on-number

xs leep

On return from a QTGET call that delivers a data bLock to the program, QTRM
places a value in this field that indicates the size of the delivered block.
Before a QTPUT call, the application program must set a value in this field
that indicates to QTRM the size of the block to be transferred. For char-set
values other than 4, the application program must indicate how many units com-
prise the block (including all ASCII unit separator character codes and any
format effector characters). For a char-set value of 4, the application pro-
gram can use a value of 0, or the nonzero value indicating how many units com-
prise the block (including all zero byte separators except the last and all
format effector characters). Special QTRM output editing functions are per-
formed for data blocks with a char-set of 4, depending on the value in the
current-trans-size field; these functions are described in the text under the
heading Display-Code Output Editing. Current-trans-size must be less than or
equal to max-trans-size.

This 6-bit field contains a signed integer that tells QTRM what action to take
after the application program issues a QTGET call. (See also the XSLEEP
field.) This field can have the values:

-n Where 1 <_ n < 32; if no data block or return-code field value other
than 1 is available to return, the program is suspended by QTRM until
information becomes available. If information is available, control
returns to the program immediately. The value used for n is not
significant.

Interrogate XSLEEP to determine what action to take after QTGET is
issued.

+n Where 1 <_ n < 32; the program will be suspended for a maximum of n
seconds. Control is returned to the program as soon as any infor-
mation is available (the return-code field value is not 1) or when
the current-abl-i field value is increased for any connection (the
return-code field value is 1). If no information is available after
n seconds, control is returned to the program with a reason-code
field value of 1.

The application program must set or change the value in this field as neces-
sary before each QTGET call. QTRM does not change the value in this field
after QTOPEN has been called. (QTOPEN sets the field to zero.)

This 12-bit field contains an integer that identifies the connection involved
in the current QTGET, QTPUT, or QTENDT call. On return from a QTGET call,
QTRM places the connection number in this field for the connection for which
information was returned by the call. Before a QTPUT or QTENDT call, the
application program must place the connection number in this field for the
connection involved in the call. This value can be used as a subscriptor or
index value to access the corresponding 10-word connection entry in the net-
work information table.

This 18-bit field contains a signed integer that tells QTRM what action to
take after the application program issues a QT6ET call. (See also the SLEEP
field.) This field can have the values:

-n Where 1 <_ n < 4096; if no data block or return-code field value other
than 1 is available to return, the program is suspended by QTRM until
information becomes available. If information is available, control
returns to the program immediately. The value used for n is not
significant.

The QTGET call is not associated with program suspension; if no data
block is available, control returns to the program immediately and a
return-code field value of 1 is used to indicate the condition to the
program. If a block is available, control also returns to the program
immediately.

+n Where 1 < n < 4096; the program will be suspended for a maximum of n
seconds. Control is returned to the program as soon as any infor-
mation is available (the return-code field value is not 1) or when
the current-abl-i field value is increased for any connection (the
return-code field value is 1). If no information is available after
n seconds, control is returned to the program with a reason-code
field value of 1.

Figure 8-1. Network Information Table Format (Sheet 4 of 10)

60499500 S 8-5

return-code This 6-bit field is used by QTRH to indicate program or connection processing

status on return from a QTGET, QTPUT, or QTLINK call. The application program

should always test the contents of this field after a QTGET, QTPUT, or QTLINK

call. This field can contain the following values:

Information has been exchanged with the network. After a QT6ET, this

value indicates that a block was received from a connection and is in

the application program text input area identified for that QTGET

call; the connection number of the connection generating the block is

in the connection-number field. After a QTPUT, this value indicates

that the block was given to NAM (however, the block might not have

been delivered to the connection yet).

After a QTLINK call has been made by the program, this value indi-

cates that the request for connection to an application is being

forwarded to NAN and is outstanding.

1 No information has been exchanged with the network. This value only

occurs after a QTGET call that was made while the sleep or xsleep

field contained or a positive value.

2 A new device or application connection has occurred. This value only

occurs after a QT6ET call. The connection number of the new connec-

tion is in the connection-number field, but no data block has been

returned by the QTGET call; the 10-word entry in the network infor-

mation table has been updated by QTRN for the new connection.

3 An improperly formatted block has been detected. This value only
occurs as a result of a QTPUT call to a device, and usually indicates

a missing or misplaced unit separator or zero byte terminator within
the block. The block causing the problem and any other subsequent

blocks sent to the device were discarded by the network.

4 Reserved for CDC use.

5 The current-abl value for the connection identified in the connection-
number field has been exceeded. This return-code value only occurs

after a QTPUT call is attempted when the current-abl value for the

connection is zero. The block involved in the call is discarded by
QTRH and must be resent after QTRH resets the current-abl field for

the connection to a nonzero value.

6 The connection between NAN and the device or application identified

in the connection-number field has been broken by one of the following

conditions:

The terminal user hung up.

The communication line failed.

A block sent to the device or application program was lost by the
network.

A block to or from the device or application program was too long

to deliver.

The terminal sent transparent data to the program.

The other application program terminated or ended the connection.

No additional communication is possible between the application
program and that device or application, and QTENDT should not be

called. The information in the 10-word entry for the affected con-
nection remains unchanged until a new connection is made that uses
the same entry.

Figure 8-1. Network Information Table Format (Sheet 5 of 10)

8-6 60499500 S

7 The user at the terminal identified in the connection-number field
has entered a user-break-1 character or caused a user-break-1
condition. This value only occurs after a QTGET call. On return
from the call, QTRM has reset the current-abl field for the affected
device to the value in the device abl field; this change indicates
that any blocks previously sent by the program but not yet delivered
to the device were discarded. The action taken by the application
program is determined by what the terminal user expects to occur
after entry of the character.

8 The user at the terminal identified in the connection-number field
has entered a user-break-2 character. This value only occurs after
a QTGET call. On return from the call, QTRM has reset the current-abl
field for the affected device to the value in the device abl field;
this change indicates that any blocks previously sent by the program
but not yet delivered to the device were discarded. The action taken
by the application program is determined solely by what the terminal
user expects to occur after entry of the character.

9 The network is shutting down. All terminal users should be notified
and QTCLOSE should be called as soon as no data blocks are outstand-
ing in either direction.

10 The network has ended all communication with the application pro-
gram. This value only occurs after a QTGET call; normally, this
value means that the application program should close all files and
end its execution. No calls to QTRM routines can be made after re-
ceipt of this reason-code value; a call to QTCLOSE is not necessary.

11 The application program has performed some operation that violates
NAM protocols. QTRM has received a logical error supervisory mes-
sage from NAM, as described in section 3. QTRH aborts the program
but places the reason code from the supervisory message in the sec-
return-code field of the network information table.

12 Another application-to-application request from this program is out-
standing. This value is returned by a QTLINK request. The QTLINK
request must be reissued after the outstanding request is completed
or rejected.

13 The connection was not established. This value is returned by a
QTGET call issued by the program following a QTLINK request. The
sec-return-code field contains one of the following:

The reason code from the abnormal response to the request-for-
connection supervisory message (CON/ACRQ/A) issued by QTRM

The reason code plus 32 from the connection-broken supervisory
message CCON/CB/R) if the connection was broken before the
connection-processing was completed

The reason codes for these supervisory messages are explained in
section 3.

14 The application-to-application connection is completed. This value
is returned by a QTGET call issued by the program following a QTLINK
request. The connection-number field contains the new connection
number. The 10-word entry in the network information table has been
updated with the new connection information.

15 Reserved for CDC use.
thru
62

63 An internal or uncoded error. If this happens, it means something
severe has taken place in QTRH. You should close your files, abort
your program, and do a dump.

Figure 8-1. Network Information Table Format (Sheet 6 of 10)

60499500 S 8-7

sec-return-code This 6-bit field contains one of the integer Logical error supervisory message

reason codes described in section 3. This field is not written by the applica-
tion program, but is provided for debugging.

When the value of the return-code field is set to 11 or 13, this 6-bit field
contains additional information for debugging based on reason codes returned
in the CON/ACRQ/A and CON/CB/R supervisory messages described in section 3.

If the supervisory message is a CON/ACRQ/A, this field contains the value of

subfield rc2 from the supervisory message.

int-msg This 6-bit field contains an integer that indicates to QTRH whether the block
involved in a QTPUT call is or is not the last or only block of a message. If

the application program supports terminals in terminal class 4, this field
must be written before any QTPUT call. Programs supporting application-to-
application connections can also use this field but it only has significance
to the destination application. This field can contain the following values:

The last or only block of the message. The application program will
not call QTPUT again for the current connection until a QTGET call
has returned an input block.

1 An intermediate block in a multiple block message. The application
program will call QTPUT again for the current connection before a
call to QTGET has returned an input block from that connection.

The connection involved in the current QTPUT call is identified in the
connection-number field. QTRM uses the int-msg field to change the abt field
of the application block header involved in the QTPUT call. If int-msg = 0,
abt = 2; if int-msg = 1, abt = 1.

next-application-name This 42-bit character data field contains the network application program name
identifying the program to which a device should be switched during processing
of a QTENDT call. This field can contain the following:

The network software uses prompting dialog or automatic login
information to determine the next application program the device
communicates with, or disconnects the device from the host if

that is an appropriate action.

NVF The Network Validation Facility reinitiates the login sequence
command for the device or causes terminal disconnection from the host.

valid The device is switched to the indicated program without prompt-
program ing dialog, when the switch is possible,
name

If either the NVF command or valid program name option is used, the name
placed in the field must be one to seven display code letters or digits, left-
justified with blank fill within the field, and the first character must be
alphabetic. If the NVF command option is used, the following commands are valid:

BYE
LOGOUT

Cause the device to be disconnected from the host.

HELLO) Reinitiate login for the device; if dialog is possible and
LOGIN) required, the login prompting sequence begins.

If the valid program name option is used, the name placed in the field must be
the element name used to define the referenced application program in the sys-
tem common deck COMTNAP.

For an application-to-application connection, this field must contain a 0.

The QTOPEN call sets this field to zero. The application program must set or
change this field as appropriate before each QTENDT call. Guidelines for the
use of this field can be found under Terminating Connections in section 3.

This field is not used with QTENDT calls for application-to-application
connections.

Figure 8-1. Network Information Table Format (Sheet 7 of 10)

8-8 60499500 S

requested-app I i cat ion-
name

destination-host

terminal-name-i/
application-name-i

tcLass-i

page-uidth-i

fami ly-name-i

dev-type-i

This 42-bit character data field contains the network application program name
identifying the program to which the current application program is requesting
a connection with a QTLINK call. This is the first identifier for the
connection. This identifier can be one to seven letters or digits Long and is
left-justified with blank fill within this field; the first character must be a
letter. For intra-host connections, this field contains the name of the
application program with which your program needs to establish a connection.
For inter-host connections, the name you use must match the value of the NAME1
parameter in the NDL OUTCALL statement used by your program.

This 18-bit character data field contains the second identifier for a connec-
tion your program initiates with a QTLINK call. If the connection is between two
hosts, this identifier must be one to three letters or digits, left-justified
with blank fill within the field; the first character must be a letter. If the
connection is within a host, this identifier can be a binary 0. By convention,
any nonzero name is the name of the destination host in which the other
application program runs. The name you use must match the value of the NANE2
parameter in the NDL OUTCALL statement used by your program.

This 42-bit character data field contains the display code characters of the
name used to identify the device on connection i within the network. The name
is one to seven Letters or digits long and is left-justified with blank fill
within this field. A terminal name used is obtained from the network
configuration file entry for the device.

For an application-to-application connection, this field contains blanks.

This 6-bit field contains the integer terminal class associated by the network
with the device on connection i. The integer used in the field is one of
those described for the tc field of the connection-request supervisory message
presented in section 3. The integer is changed during a QTGET call whenever
the terminal user has entered a TIP command to change the terminal class of
the device on connection i.

This field is not used for application-to-application connections.

This 12-bit field contains the integer page width value associated by the net-
work with the device on connection i. The integer used in the field has the
significance explained in sections 2 and 3. The integer is changed during a
QTGET call whenever the terminal user has entered a TIP command to change the
page width or terminal class of the device on connection i.

This field is not used for application-to-application connections.

This 42-bit character data field contains the display code characters of the
permanent file family name associated by the network with device connection i.
The fami ly name is one to seven letters or digits long and is left-justified with
blank fill within this field.

This field is not used for application-to-application connections.

This 6-bit field contains an integer value to identify the type of connection for
connection i. The integer used in this field is one of those described for the
dt field of the connect ion-request supervisory messages presented in section 3.
Typical values are:

12

This connection is a device-to-application connection for a console.

This connection is an application-to-application connection within the
same host.

This connection is an application-to-application connection between
hosts.

This connection is a device-to-application connection for a device
thru with a site-defined device type.
15

Figure 8-1. Network Information Table Format (Sheet 8 of 10)

60499500 S 8-9

page-length-i

usei—name-1

This 12-bit field contains the integer page length value associated by the
network with the device on connection i. The integer used in the field has
the significance explained in sections 2 and 3. The integer is changed during
a QTGET call after the terminal user enters a TIP command to change the page
length or terminal class of the device on connection i.

This field is not used for application-to-application connections.

This 42-bit character data field contains the display code characters of the
NOS user name associated by the network with device connection i. The user
name is one to seven letters, digits, or asterisks Long and is left-justified
with blank fill within the field.

res

max-block-size-i

abl-i

current-abn-i

acknowledged-abn-i

state-i

current-abl-i

This field is not used for application-to-application connections.

Reserved by CDC.

This 12-bit field contains the integer downline block size in character units for
the device on connection i. This block size is based on the network
configuration file information for the device or the local configuration file
information for an application-to-application connection. The block size is a
suggested value for adjusting the current-trans-size field based on efficiency
considerations for the site.

This 6-bit integer field contains the number of blocks permitted by the network
to be in transit to connection i at a given moment. This block limit is based on
the network configuration file information for the connection. The value used in
this field determines the number of QTPUT calls that can be made on connection i

before a QTGET call returns an indication that a block was delivered to the
connection. A typical value is 2 for a device-to-application connection and 7
for an application-to-application connection.

This 18-bit integer field contains the binary block number assigned by QTRH to
the block sent to connection i by the last QTPUT call involving that connec-
tion. Every block sent by QTRH is assigned a number; the number assigned is

sequential within the blocks sent to a given connection, and the sequence is
restarted each time a new connection is assigned to the connection number.

This 18-bit integer field contains the binary block number assigned by QTRH to
the block last acknowledged on connection i. QTRH updates this field during
a QTGET call, when QTRN determines that a block-delivered message has been
received.

This 6-bit field contains the integer flag identifying the current processing
state of connection i. This field has the values:

This connection number is currently not in use.

1 This connection is currently in a transition state while a new con-
nection is being established. No other information in the associated
10-word entry for this connection should be considered accurate.

2 This connection is in use and in a normal state for input or output
processing by the application program.

4 This connection is currently in a transition state while a new con-
nection is being established. No other information in the associated
10-word entry for this connection should be considered accurate.
This value is used for application-to-application connections only.

This 6-bit integer field contains the number of sequential QTPUT calls that
currently can be made for connection i without waiting for acknowledgment of
delivery to the device or application. QTRH updates this field during QTGET
and QTPUT caLls, and the application program should examine the field before
making a QTPUT call involving the connection. The values used in this field
range from to the value contained in the abl-i field; a value of indicates
that no blocks currently can be sent (the maximum number of blocks are in
transit to the connection).

Figure 8-1. Network Information Table Format (Sheet 9 of 10)

8-10 60499500 S

upline-abh-i This 60-bit field contains the binary application block header received by

«TRM with the last input data block delivered by a 8TGET call for connection i.

This field has the format and contains the information described in section 2.

downline-abh-i This 60-bit field contains the binary application block header created by QTRM

to send with the last output data block involved in a QTPUT call for connec-

tion i. This field has the format and contains the information described in

section 2.

Figure 8-1. Network Information Table Format (Sheet 10 of 10)

60499500 S 8-10.1/8-10.2

I In figure 8-1, the number of 10-word entries is

shown as n and is communicated to QTRM as the value
in the num-conns field. The connection number for
a specific terminal or application is identified as
i in the field descriptions.

For the convenience of programmers using COBOL 5.2

or subsequent versions that permit manipulation of
information in 6-bit bytes, the fields within the
network information table are defined in 6-bit byte
multiples. The first occurrence of each field

| within figure 8-1 indicates the type and size of
the COBOL data item needed to define the field
properly. These indications have the form I(x) or
C(y)> where I indicates binary integer data, C

indicates character data, x indicates the number of
bits comprising the integer, and y indicates the
number of 6-bit display-code characters comprising
the character string.

SUBROUTINES
Calls to the subroutines comprising QTRM do not
contain many parameters because most communication
between an application program and QTRM occurs
through the fields in the network information table.
The format of the subroutine calls conforms to the
general guidelines given for the compiler-language
form of the AIP routines, as described in sections
4 and 5. The QTRM routines reside in the libraries
NETIO and NETIOD. These libraries are accessed as
described in sections 4 and 6.

QTOPEN is normally called only once per network
communication access but can be called again after
a QTCLOSE call. No QTRM call other than QTCLOSE
can be made before QTOPEN is called. The call to
QTOPEN performs the following functions:

Identifies to QTRM the address of the network
information table defined by the application
program

Allows QTRM to use the information already
placed in the network information table by the
application program

Allows QTRM to initialize the connection entry
portions of the network information table and
to store its own information in the global
portion of the table

Causes QTRM to identify the application program
to the network

Before QTOPEN is called, the application program
must place information in the following fields of
the table:

Application-name

Char-set

Num-conns

A-to-A

The format of the subroutine calls is given in the
following subsections. Because QTRM is designed to
be COBOL-oriented, the subroutine descriptions are
COBOL-oriented. As described in section 4, QTRM
can be used by programs written in languages other
than COBOL.

During processing of the call, QTRM uses this
information to make appropriate AIP calls. For
example, suppose the application program makes the
following call:

ENTER FORTRAN-X QTOPEN USING NIT

INITIATING NETWORK ACCESS (QTOPEN)

The application program begins communication with
the network by calling QTOPEN. This call has the

| format shown in figure 8-2.

ENTER FORTRAN-X QTOPEN USIN6 net-info-table

net-info-table An input parameter, specifying
the symbolic address for word 1

in the global portion of the
network information table that
should be used by QTRM during
access to the network. In a
COBOL call, this parameter is
the Data Division descriptor
for a level 01 data item con-
taining level 02 or lower level
data items in the form de-
scribed in figure 8-1. The
fields in the network informa-
tion table must be initialized
before the call to QTOPEN is
issued.

| Figure 8-2. QTOPEN Statement COBOL Call Format

where NIT is the network information table symbolic
address and contains the application-name RMV2, the
num-conns value of 5, and the char-set value of 4.
In the Data Division of the program code, NIT
appears as:

WORKING-STORAGE SECTION.
01 NIT.
02 GLOBAL.
03 APPLICATION-NAME PIC X(7) VALUE IS

"RMV2".
03 CHAR-SET PIC 9 COMP-4 VALUE IS 4.

03 NUM-CONNS PIC 99 C0MP-4 VALUE IS 5.

03 FILLER X(30)

.

QTRM then connects the program to the network. QTRM
identifies the program as the network application
program called RMV2. RMV2 supports five devices
simultaneously on connections numbered 1 through 5,

uses 6-bit display code for all input and output
transmissions, and cannot process transparent mode
transmissions.

When the QTOPEN call is completed, the application
program either performs processing not related to
network communication or uses the QTGET call and
the sleep field of the network information table to
suspend its processing until a device or application |

60499500 R 8-11

I requests access to it. As soon as a device con-
nection is completed (as soon as the state field in
a connection entry of the network information table
changes to 2), the program must identify itself to

| the device by sending a message to it using a call
to QTPUT.

SENDING DATA (QTPUT)

The application program sends data through the net-
work by calling QTPUT. This call has the format
shown in figure 8-3.

Place the data to be transmitted by the call
into the text area identified by the parameter
to be used in the call.

For device-to-application connections, place a I
unit separator code as a line terminator at the
end of the data in the text area, if char-set
is not 6-bit display code. QTRM will supply
the final zero-byte terminator for 6-bit display
code data for device-to-application connections |
(this QTRM function is described in more detail
under the heading QTRM Formatting of Display-
Coded Output).

ENTER FORTRAN-X 8TPUT USING ta-out-acnj

ta-out-acn-j An input parameter, specifying the
symbolic address of the output
text area for the device or appli-
cation using connection acnj. In
a COBOL call, this parameter is

the Data Division descriptor for
a level 01 data item with a length
defined by the max-trans-size
value in the network information
table. Data contained in ta-out-
acn-j is subject to the sane con-

straints as normalized mode data
in the text area used by any
NETPUT call to AIP. These
constraints are described in

section 2.

Figure 8-3. QTPUT Statement COBOL Call Format

Before making a call to QTPUT, the application
program must perform the following operations:

Check the connection entry in the network
information table to which the QTPUT call
applies. The current-abl and/or state field
must contain values that permit the call to be
made.

Ensure that the connection number identifying
the connection to which the call applies is in
the connection-number field of the network
information table.

Place a 1 in the int-msg field of the network
information table if that action is necessary.
This field must be used to service a device in
terminal class 4 correctly when output queuing
is performed. Devices in that class, such as
the 2741, have lockable keyboards. When output
begins, the network software locks the device
keyboard. The keyboard remains locked until a
block is delivered that has an int-msg value of

associated with it. Then the keyboard is
| unlocked and no more output to the device is

permitted until input is completed. If a mes-
sage comprising nine blocks is being sent to

| the device, the first eight must have the int- •

msg field set to 1 to prevent the network soft-
ware from interpreting an intermediate portion
of a message (a single block) as the entire
message and prohibiting output of the remainder
of the blocks. The last block of a message
must always have the int-msg field set to
before it is sent.

Place the size of the current transmission in
the current-trans-size field of the network |
information table. All embedded line termi-
nators of either type must be included in the
character count comprising the current trans-
mission size. If a char-set field value other
than 4 is used, any final unit separator must
also be included in the character count; if a
char-set field value of 4 is used, the character
count should not include the zero-byte line
terminator that QTRM supplies automatically for
device-to-application connections. I

Place the correct value in the max-trans-size
field of the network information table, if that
information was not stored there before a pre-
vious QTRM call. The max-trans-size value can
be changed before any QTPUT call, because the
output text area used for the call can be
changed. QTRM uses the value in this field to
determine the starting point of any backward
scanning it is required to perform.

When the QTPUT call is completed, the data block
involved in the call usually is in transit through
the network but is not necessarily already delivered
to the connection. Delivery of the block, and the
possibility of additional QTPUT calls for the same
connection, can be tracked through QTGET calls and |
the fields of the connection entry in the network
information table.

QTRM sometimes cannot transmit a block through the
network when a QTPUT call is made. After return
from the QTPUT call, the application program should
check the return-code field of the network infor-
mation table to determine whether the block was
actually transmitted.

As an example of QTPUT use, suppose an application
program wants to send the message WELCOME ABOARD to
the device on connection 1. The program sends the |
prompting message with a call such as that shown in
the following statement set:

MOVE " WELCOME ABOARD " TO OUT-TEXT.
MOVE 1 TO CONNECTION-NUMBER.
MOVE 15 TO CURRENT-TRANS-SIZE.
ENTER FORTRAN-X QTPUT USING OUT-TEXT.
IF RETURN-CODE NOT = GO TO PROBLEM.

Elsewhere in the program, the Data Division con-
tains :

01 OUT-TEXT PIC X(100).

The Procedure Division also contains statements to
test the entry for connection 1 to see whether the
call can be made. These tests are necessary even

8-12 60499500 R

for the first transmission from the program because
QTRM might indicate that the connection is in a
state temporarily preventing any transmission.

Use of the current-trans-size field and the first
character of the text area during display-coded

| transmissions is described later in this section.
The tests of the table needed before the QTPUT call
are associated with the QTGET call and are described
in the subsection on Output Queuing Using QTRM.

OBTAINING DATA OR CONNECTION
STATUS (QTGET)

The application program obtains input from a con-
nection or status information about a connection by
calling QTGET. This call has the format shown in

I figure 8-4.

ENTER FORTRAN-X QTGET USIN6 ta-in

ta-in An input parameter, specifying the
symbolic address of the input text area.
In a COBOL call, this parameter is the
Data Division descriptor for a level 01
data item with a length defined by the
max-trans-size value in the network
information table. Data contained in
ta-in is subject to the same constraints
as normalized mode data in the text area
used by any NETGET, NET6ETF, NETGETL, or
NETGTFL call to AIP. These constraints
are described in section 2.

Figure 8-4. QTGET Statement COBOL Call Format

Before making a call to QTGET, the application
program must perform the following operations:

Place the correct value in the sleep field (in
word 5) of the network information table, if
that information was not stored there before a
previous QTRM call. The sleep field value used
can be changed before any QTGET call, if neces-
sary.

Place the correct value in the max-trans-size
field of the network information table, if that
information was not stored there before a prev-
ious QTRM call. The max-trans-size value can
be changed before any QTGET call, because the
input text area used for the call can be
changed.

During the QTGET call, QTRM updates all connection
entry fields in the network information table for
which information is available. This updating is
performed for all connections, even though the call
returns information concerning a single connection.

The QTGET call also causes the network to select a
specific device or application for the program and'

QTRM to service. If no current requirement for
servicing exists, QTRM either returns control to
the program and places a value of 1 in the return-

code field of the network information table or

suspends program execution until a servicing re-
quirement arises. Whether return from the QTGET
call is immediate or delayed depends on the sign
and value of the sleep field when the call occurs.

If a servicing requirement exists, QTRM returns
control to the program with information in one of
two forms. If QTRM detects a network or connection
status condition corresponding to a nonzero return-
code field value, the return-code and connection-
number fields are appropriately set, and control
returns to the program. QTRM does not deliver input
data on return from such a call. Only status
information is returned; any data queued for
delivery to the program must be obtained through
subsequent QTGET calls.

If QTRM does not detect a network or connection
status condition corresponding to a nonzero return-
code field value, the return-code field is set to
zero. Control returns to the program after the
connection-number field has been set to identify
the connection affected by the call, and a single
input block from that connection is delivered.

After return from a QTGET call, the application
program should perform the following operations:

Check the return-code field of the network
information table to determine whether informa- §
tion or status was returned by the call

Check the connection-number field of the network
information table to determine which connection
is involved with the information or status
returned in the call

Take an action appropriate for the return-code
field value resulting from the call

Depending on the sleep value used when making the
call and on events in the network, the response
from any QTGET call can be any of the following:

Nothing (no data block, no status, and no con-
nection entry changes).

No input data block but one or more connection
entries are updated to reflect delivery of
previously sent blocks to the corresponding
connections; the current-abl and acknowledged-
abn fields are updated to reflect such deliver-
ies.

An input data block and connection entry fields
are updated.

An input data block but no connection entry
fields are changed.

Status information (indication of a new connec-
tion, a user-break, or other status change on
an existing connection) and connection entry
fields are updated.

Status information (shutdown in progress, block
discarded, and so forth) but no connection entry
fields are changed.

The action taken by the application program after a
QTGET call must not assume that only one of these
conditions is possible and should not exclude any
of them. Use of the sleep field value and the
updating of information in the connection entries
is described further under Output Queuing Using
QTRM later in this section. |

60499500 R 8-13

The following example of QTGET use permits an
application program to suspend its operation when
there is no input for it to process, to process any
input that does exist, and to perform any processing
related to changes in the status of the network or

| of a specific device:

MOVE -1 TO SLEEP.
ENTER FORTRAN-X QTGET USING IN-DATA.
IF RETURN-CODE NOT = 0, GO TO STATUS-

CHECK.
PERFORM PROCESS-INPUT.

On return from the QTGET call, the application
program either has data to process because the
return-code field is or else has status changes
to process because the return-code field is not 0.
If the return-code field contains a 0, the data
block returned as a result of the QTGET call is
found in the text area called IN-DATA.

The actions required by an application program for
a specific nonzero return-code field value are
described in the field definition information given

| previously in this section. The interaction of the
QTGET calls and the fields in the network infor-
mation table are the primary processing control
mechanism of any application program using QTRM.
If the QTGET call returns data and the character
set is display code, QTRM blank fills the last line
of the message if necessary to make the message end
on a word boundary.

SENDING A SYNCHRONOUS
SUPERVISORY MESSAGE (QTTIP)

The application program can send a synchronous
supervisory message through the network by calling
QTTIP. The call format for QTTIP is identical to

| QTPUT. The message can be in char-set 2 or 3 for-
mat.

If the application program sends a synchronous
| supervisory message that has a response (CTRL/CHAR/

N or CTRL/RTC/R), the response is delivered when the
application program calls QTGET. The application
block type field of the upline-abh-i field ident-
ifies the data as a supervisory block. Supervisory
message responses are always returned to the appli-

I cation program as char-set 3.

Place the name of the application program to
which connection is requested in the requested-
application-name field in the network informa-
tion table.

Place the name of the destination host in which
the other application program resides in the
destination-host field in the network infor-
mation table.

On return from the QTLINK request, the application
program should check the value in the return-code
field of the network information table. The
return-code from figure 8-1 is interpreted as |
follows:

A return-code value of indicates that the
request is being forwarded to NAM. The con-
nection has not yet been completed.

A return-code value of 12 indicates that the
request is ignored because another request for
an application-to-application connection is
outstanding and not yet complete (only one con-
nection request can be outstanding at a time).
The request should be retried at a later time.

The connection-number field is not changed upon I

return from the QTLINK call. A QTGET call made I

after the QTLINK call updates this field. |

After a call to QTLINK, a call to QTGET returns a
value of 13 or 14 in the return-code field of the
network information table. This completes the out-
standing request for an application-to-application
connection. The return-code field from figure 8-1 |
is interpreted as follows:

A return-code value of 14 indicates that the |
connection to the requested application has
been made. The connection-number field of the
network information table contains the connec-
tion number for the application-to-application
connection.

A return-code value of 13 indicates that the J
request for connection has been rejected. The
sec-return-code field of the network information
table contains the reason code returned in the I
CON/ACR/A supervisory message. 1

LINKING AN APPLICATION TO ANOTHER
APPLICATION (QTLINK)

The application program requests a connection to
another application program for the purpose of per-
forming message transfers between them. This call

I has the format shown in figure 8-5.

ENTER FORTRAN-X QTLINK

| Figure 8-5. QTLINK Statement COBOL Call Format

Before making a call to QTLINK, the application
program must perform the following operations:

Set the A-to-A field in the network information
table to 1. This field must be set before the
program issues the call to QTOPEN.

ENDING A SINGLE CONNECTION (QTENDT)

The application program ends communication with a
single device or application by calling QTENDT.
This call has the format shown in figure 8-6.

ENTER FORTRAN-X QTENDT I]
Figure 8-6. QTENDT Statement COBOL Call Format

Before making a call to QTENDT, the application
program should perform the following operations:

Place the connection number for the device or
application program to be disconnected in the
connection-number field of the network infor-
mation table.

8-14
60499500 R

Send a disconnection indicator message to the
terminal or application so that the operator or
application program does not attempt input.

Set the next-application-name field to zero or
place an appropriate name or NVF command in it
if the connection is to a device.

Check the connection entry in the network
information table to determine whether the
current-abl field contains the same value as
the abl field. Unless the values in these two
fields are the same, at least one block of data

remains undelivered to the connection and QTENDT
should not be called to end communication with
the connection.

After a call to QTENDT is made, no additional
information can be sent to the connection involved.
Except for the state field, information contained in
the connection entry portion of the network informa-
tion table remains unchanged until the connection
number associated with that entry is reassigned by
the network software to another connection.

A call to QTENDT is not necessary to end a connec-
tion that has already been broken by events in the
network. A call to QTENDT for a broken connection
performs no action. A forced shutdown condition (a

return-code field value of 10) is equivalent to a
QTCLOSE call because QTRM automatically ends all
connections without action by the application
program.

As an example of QTENDT use, consider the following
situation. The application program receives a com-
mand on connection number 4 that indicates the
terminal user wants to end communication with the
program. The program checks the fields in the con-
nection entry of the network information table and
determines that no blocks remain undelivered from
previous QTPUT calls. Because the terminal user has
requested that communication be ended, the program
does not send a block to indicate that action.
Instead, the following code is executed:

MOVE 4 TO CONNECTION-NUMBER.
ENTER FORTRAN-X QTENDT.

Upon return from the QTENDT call, connection number
4 becomes available for assignment by the network
software to a new connection serviced by the pro-
gram. The program therefore executes code that
cleans up any remaining information in other tables
or buffers concerning the old connection 4, so that
no confusion exists if another device or application
program is assigned to the same number.

The application program should call QTCLOSE only
once after a QTOPEN call and cannot call any other
QTRM routines except QTOPEN after calling QTCLOSE.
Multiple calls to QTCLOSE have no effect. The pro-
gram should always call QTCLOSE as part of its
processing termination, unless a forced shutdown
occurs. When a forced shutdown occurs (indicated
by a return-code field value of 10), QTRM automati-
cally ends all program access to the network.

A call to QTCLOSE performs the following operations:

Breaks all remaining connections (devices I
receive an APPLICATION FAILED message from the
network software)

Ends program access to the network and makes
new connections impossible

Closes the AIP debug log file and statistics
file, if those files are being created

The QTCLOSE call is usually issued after one of the
following situations arises:

The program receives a shutdown or idledown
indication from the network software (indicated
by a return-code field value of 9)

.

The program detects a specific clock time.

The program receives a shutdown command from a
terminal user or a connected application pro-
gram.

Before making a QTCLOSE call, the application pro-
gram should perform the following operations:

Send a shutdown advisory message to all devices I
and applications still connected to the program

Determine that all transmitted blocks have been
delivered to the connection

Issue QTENDT calls for all remaining device |
connections so that APPLICATION FAILED messages
do not appear at those connections

A QTCLOSE example complying with these recommenda-
tions would be too complex for the purposes of this
section. Examples of QTCLOSE calls appear in sev- I
eral contexts within the program at the end of this I

section. |

OUTPUT FORMATTING AND
EDITING

ENDING COMMUNICATION WITH THE
NETWORK (QTCLOSE)

The application program can end communication with
all connected devices or applications and with the
network software simultaneously by calling QTCLOSE.
This call has the format shown in figure 8-7.

ENTER FORTRAN-X QTCLOSE

| Figure 8-7. QTCLOSE Statement COBOL Call Format

Output transmitted through QTRM to a device always |
uses the format effector feature of the AIP inter-
active virtual terminal interface. This format
effector feature is completely described in section
2, and summarized in the following subsection.

Output transmitted through QTRM to another applica-
tion within the same host need not be restricted to

formatting conventions of the AIP Interactive Vir-
tual Terminal interface. Both application programs
must be prepared to handle data that passes between
them. The length of the output block is based on
the character set used, indicated in the char-set
field, and is the value stored in the field named
current-trans-size.

60499500 R 8-15

I If display-coded output is transmitted to a device
(a char-set field value of 4 is used) , QTRM auto-
matically performs editing functions on the contents
of the text area used. These functions include
placement of the final line terminator (zero-byte
terminator) at the end of the output block, and
determination of the number of characters in the
block.

The current-trans-size field for blocks sent on
appllcation-to-appllcation connections should be
set to a value equal to the number of central memory
words in the block using the character type speci-
fied in the char-set field. The contents of a block
are not edited. If the data is in display-code
(the char-set field is equal to 4) and the current-
trans-size field is equal to zero, the effective
current-trans-size is determined by scanning the
output text area.

FORMAT EFFECTORS

The network software assumes that the first char-

I acter of each line in a block sent to a device
through QTRM begins with a format effector char-
acter. The format effector character controls

| placement of the line on the device output mechanism
in a manner similar to the way a carriage control
character functions in output sent to a batch line
printer. Format effector characters are discarded
by the network software, so an application program
should always format its output to prevent the first
character of data from being interpreted erroneously
as a format effector character.

DISPLAY-CODE OUTPUT EDITING

Each block sent by a QTPUT call can contain one or
many lines of data. Each line of data must end with
a line terminator byte appropriate to the value in
the char-set field of the network information table.
The terminator must follow the last character posi-
tion in the line.

When an application program uses a char-set field
value of 4, it must allow 12 to 66 bits of text
area buffer space for the final 12-bit zero-byte
line terminator. For COBOL programs, this means
the text area used for any QTPDT call must be at
least 11 characters longer than the longest block
of data to be sent.

The program calls QTPUT. QTRM then determines
where the text area ends by examining the max-
trans-size field of the network information
table. QTRM scans backward through the output
text area, skipping over blanks until it
encounters a nonblank character. QTRM inserts
the zero-byte terminator after this character,
then calculates the number of characters in the
block and transmits it through the network.

This option eliminates unnecessary trailing blanks
from the last output line of any block and makes it

unnecessary for the application program to calculate
how many characters are being transmitted. An
alternate method permits transmission of trailing
blanks , as follows

:

The program places the output block containing
at least one character (the format effector
character) in the output text area.

The program places the number of characters
comprising the block in the current-trans-size
field of the network information table.

The program calls QTPUT. QTRM scans forward
the indicated number of character positions,
writes the final zero-byte terminator, if
necessary, after the last character counted,
and transmits the block. QTRM adjusts the
character count indicating the block length to
compensate for the line terminator bytes it has
added.

Both options require that the last character in the
block not be a colon or consecutive colons, in
character positions 9 and 10 of a central memory
word. Two consecutive colons might be misinter-
preted as a zero-byte terminator on a system using
a 64-character set.

QTRM (QTPUT) always adds a terminator for 6-bit
display code data. If the program provides its own
final line terminator for display-coded output,
QTRM does not function in the same manner as it
does for output transmissions occurring with a
char-set field value of 2 or 3. No automatic
terminator placement occurs during a QTPUT call
involving those char-set field values.

Generating the zero-byte terminator at the appro-
priate location in the text area is difficult in a
COBOL program. QTRM therefore always generates the
last such byte required by the block during its
processing of a QTPUT call (interim line terminators
must still be generated by the application program
before the call).

If an output block contains only one line, QTRM can
be used as follows to perform all output formatting
required:

The program sets the current-trans-size field
of the network information table to 0.

The program blank-fills the entire output text
area to be used and then places the block to be
sent into the text area (the block must include
the format effector character). The block must
contain at least one character other than a
blank.

OUTPUT QUEUING USING QTRM
Application programs commonly need to transmit more
than one block in a message. If all of the con- I
nections serviced by the program have large values |
assigned for the abl parameter, no special program-
ming is required. Most networks, however, use small
values for the abl parameter. When a program using
QTRM executes in such a network, it must use an
output queue to store blocks ready for output when-
ever the network does not permit immediate output
of them.

An output queue processor using QTRM can be coded
according to the algorithm shown in figure 8-8. |
This algorithm uses the sleep field parameter in
the global portion of the network information table
and depends on use of the current-abl parameter in
the connection entry portion of the table. The |
following paragraphs explain the logic used to
design the algorithm.

8-16 60499500 R

QTOPEN

Initialize the
stack to empty

Yes

Issue QTGET
while sleep parameter

is set to -1

No

Issue QTGET
while sleep parameter

is set to 1

Main body of
user logic —

L_£
Yes

Process this

message

G>
Yes

No

No

Scan from bottom of stack
looking for a transmission

that can now be sent

Send reply, or place transmission
that cannot be sent (due to logjam) on
top of stack, with its connection number

Yes

Send it and remove
it from the stack 6

Figure 8-8. Algorithm for Output Buffering Using QTRM

When an application program services only one

I

connection, the network can be made to cope with
situations where the program produces output faster
than a device can reproduce the output. The program
sets the sleep parameter to a positive integer, and
the network simply rolls the program out of central

| memory until the device catches up with the program.

You cannot use the sleep parameter as a solution
when the application program services more than one
connection because the program is always rolled
back in when input is available from any connection.
Thus, input from device B brings the program back
into central memory even though the output backlog
for device A has not disappeared. A program serv-
icing several connections always requires an output
queuing algorithm that applies to each, when each
connection potentially can be sent more than one
block in a single message.

Programs can also be coded for the opposite (type-
ahead) environment, when the terminal user wants to
enter many input messages and receive only one out-
put transmission. Input queuing and support of
typeahead are not discussed in this manual. Type-
ahead can be supported without any interaction of
an application program with the network protocol.

The primary control variable of the output queuing
algorithm is the connection number. Both the |
accompanying flow chart and the sample progam code
depend on the use of the connection number field in
conjunction with the connection entry fields of the I
network information table during the output queue
scanning process.

An application program can control the flow of its
output to a specific connection by checking the I
current-abl field of the connection entry in the |

60499500 R 8-17

network information table before each QTPUT call

| involving that connection. If the field contains a
zero, the call cannot be made without violating
network protocol; if the field does not contain a
zero, the QTPUT call can be made.

The current-abl, acknowledged-abn , and other fields
in the network information table are only updated
by QTRM during processing of a QTGET call. Tests
of these fields are not meaningful unless a QTGET
call is made before the tests. To properly control
output flow, the application program must make
periodic calls to QTGET with a positive value in the
sleep field of the network information table,
regardless of whether the program expects input

| from a connection. The size of the positive value
is a tuning consideration determined by such things
as the average length of output blocks and the

| speed of the device being serviced.

These QTGET calls return control to the program
after the sleep period. The program can then test
the current-abl field and make any QTPUT calls that
have become feasible. A QTPUT call is feasible
whenever the current-abl value is nonzero. If the
value is zero, another QTGET call must be made.

An application program can use two forms of output
flow control queuing. The program can actually
generate all output required as a response to one
input, then queue the output in large internal buf-
fers or disk files. This queued output is then
spooled to the connection in QTPUT calls involving
one or more lines in blocks up to the max-block-size
value for the connection entry in the network
information table. The algorithm already described
is used to control the occurrence of the QTPUT
calls.

Alternatively, the application program can queue
its input requests. When the flow control algorithm
described previously shows that a QTPUT call can be
made, the program can generate only enough output
for one QTPUT call. After making the call, an
uncompleted input request is returned to the queue
to await additional processing the next time the
flow control algorithm permits another QTPUT call
for the connection. This approach requires a small
input queue for each connection, but does not
require large internal buffers for output storage.

The second approach minimizes field length require-
ments and mass storage access requirements for the
program. Also, the program can avoid wasted output
processing when the terminal user issues a user-
break to terminate output after only one or two
blocks of the output have been delivered. With the
first approach, processing for the remainder of the
output has already occurred and is wasted. With
the second approach, no processing for the addi-
tional output occurred and therefore the additional
processing can be bypassed.

SAMPLE PROGRAM
Figure 8-9 contains the source code listing for a I
COBOL program that demonstrates use of QTRM in the
simplest form possible. Program ECH0-RMV2 is simi-
lar to the FORTRAN program RMV3 shown in section
7. Both programs return to the terminal user each
block entered from the device. Both programs queue
output blocks and permit a prompting message to be
output after each returned message. Both programs
acknowledge entry of a user-break character with
dialog. Both programs shut down operation after
receiving a terminal operator command.

8-18 60499500 R

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16.12.21.30. PAGE 1

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. ECHO-RHV2.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 INPUT-OUTPUT SECTION.
6 FILE-CONTROL.
7 DATA DIVISION.
8 FILE SECTION.
9 WORKING-STORAGE SECTION.
10 01 NETWORK-INFORMATION-TABLE.
11 02 GLOBAL-PORTION.
12 03 APPLICATION-NAME PIC X(7).
13 03 CHARACTER-SET PIC 9 COHP-4.
14 OS NUMBER-CONNECTIONS PIC 999 CONP-4.
15 03 NAN-SUPERVISOR-WORD PIC X(10).
16 03 FILLER PIC X(19).
17 03 APPLICATION-TO-APPLICATION PIC 9 COMP-4.
18 *
19 *THE PICTURE SIZE USED FOR COMPUTATIONAL ITEMS SUCH AS
20 *NAX-TRANS-SIZE AND SLEEP IS CHOSEN TO PERMIT STORAGE OF
21 *THE LARGEST POSSIBLE FIELD VALUE WITHOUT TRUNCATION OF
22 *THE VALUE DIGITS.
23 *

24 03 MAX-TRANS-SIZE PIC 999 COMP-4.
25 03 MESSAGE-LENGTH PIC 999 COHP-4.
26 03 SLEEP PIC S9 COHP-4.
27 03 CONNECTION-NUMBER PIC 999 COMP-4.
28 03 RETURN-CODE PIC 9 COMP-4.
29 03 SECONDARY-RETURN-CODE PIC 9 COMP-4.
30 03 INTERMEDIATE-MESSAGE PIC 9 CONP-4.
31 03 NEXT-APPLICATION-NAME PIC X(7).
32 03 REQUESTED-APPLI CATION-NAME PIC X(7).
33 03 DESTINATION-HOST PIC X(3).
34 03 FILLER PIC X(33>.
35 02 TERMINAL-ENTRY OCCURS 5 TIHES.
36 03 TERMINAL-NAME PIC X(7).
37 03 TERMINAL-CLASS PIC 9 COMP-4.
38 03 PA6E-WIDTH PIC 999 COHP-4.
39 03 FAMILY-NAME PIC X(7).
40 03 DEVICE-TYPE PIC X.
41 03 PAGE-LENGTH PIC 999 COMP-4.
42 03 USER-NAME PIC XC7).
43 03 FILLER PIC X.
44 03 MAXIHUM-BLOCK-SIZE PIC 999 COMP-4.
45 03 ABL PIC 9 COMP-4.
46 03 CURRENT-ABN PIC 9(4) CONP-4.
47 03 ACKNOWLEDGED-ABN PIC 9(4) CONP-4.
48 03 STATE PIC 9 COMP-4.
49 03 FILLER PIC X.

50 03 CURRENT-ABL PIC 9 COMP-4.
51 03 FILLER PIC X(10).
52 03 UPLINE-ABH PIC X(10).
53 03 DOWNLINE-ABH PIC X(10).
54 03 FILLER PIC X(30).

COLUMN 1 2 3 4 5 6 7 8
1 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 1 of 7)

60499500 S 8-19

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16.12.21.30. PAGE 2

55 01 INCOMING.
56 02 COMMAND PIC X(20>.

57 02 REST-OF-DATA PIC X(80).
58 01 OUTGOING.
59 02 PRINT-CONTROL PIC X.

60 02 OUT-MESSAGE PIC XC140).
61 01 FOUND-FLAG PIC 9.
62 01 QUEUE-SIZE PIC 99.

63 01 HOLDING-QUEUE.
64 *
65 *THIS IS A PUSHDOWN QUEUE USED FOR STORAGE OF THOSE
66 *OUTPUT BLOCKS THE PROGRAM IS TEMPORARILY PREVENTED FROM SENDING
67 *T0 THE TERMINAL BECAUSE OF BLOCK LIMIT OR OTHER EVENTS IN THE
68 *NETWORK.
69 *

70 02 QUEUE-ENTRY OCCURS 1 TO 60 TINES DEPENDING ON QUEUE-SIZE
71 INDEXED BY INX-1 INX-2.

72 03 S-CONNECTION-NUMBER PIC 999 COMP-4.
73 03 S-MESSAGE PIC X(140).
74 03 S-INTERMEDIATE-MESSAGE PIC 9 COMP-4.
75

76
77
78 PROCEDURE DIVISION.
79
80
81 INITIALIZATION.
82 *
83 *HERE, THE NETWORK INFORMATION TABLE IS PRESET.
84 *

85 MOVE "RMV2" TO APPLICATION-NAME.
86 MOVE 4 TO CHARACTER-SET.
87 MOVE 120 TO MAX-TRANS-SIZE.
88 *
89 *THE FORMAT EFFECTOR CHARACTER "." CAUSES THE CURSOR TO
90 *RETURN TO THE LEFT EDGE OF THE SCREEN OR PAGE
91 'FOLLOWING THE CONTENTS OF OUT-MESSAGE. THIS ACTION
92 *LEAVES THE CURSOR POSITIONED SO THAT THE USER CAN ENTER
93 *A LINE EQUAL TO THE FULL PAGE WIDTH OF THE TERMINAL.
94 *
95

96 MOVE "." TO PRINT-CONTROL.
97 MOVE SPACES TO OUT-MESSAGE.
98 MOVE SPACES TO INCOMING.
99 MOVE 5 TO NUMBER-CONNECTIONS.
100 MOVE -1 TO SLEEP.
101 MOVE 1 TO INTERMEDIATE-MESSAGE.
102 MOVE TO QUEUE-SIZE.
103 MOVE TO APPLICATION-TO-APPLICATION.
104 MOVE TO FOUND-FLAG.
105 ENTER FORTRAN-X QTOPEN USING NETWORK-INFORMATION-TABLE.
106
107 *

108 *ALL TERMINALS WILL BE SWITCHED AUTOMATICALLY TO IAF

COLUMN 12 3 4 5 6 7 8
1 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 2 of 7)

8-20 60499500 R

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RN A0PT= 66/CDC/CDCS2 83/06/16. 12.21.30. PAGE 3

109 *WHEN THEY ARE DISCONNECTED FROM THIS PROGRAM.
110 *

111 MOVE "IAF" TO NEXT-APPLICATION-NAME.
112

113 MAIN-LOOP.
114 PERFORM RECEIVER THRU RECEIVE-EXIT.
115
116 IF STATE (CONNECTION-NUMBER) = 1

117 GO TO MAIN-LOOP.
118 IF RETURN-CODE = 2

119 MOVE TO INTERMEDIATE-MESSAGE
120 PERFORM DISPLAY-BANNER THRU BANNER-EXIT
121 GO TO MAIN-LOOP.
122 IF RETURN-CODE = 4
123 PERFORM PUSH-DOUN-QUEUE
124 GO TO MAIN-LOOP.
125 IF RETURN-CODE = 6
126 PERFORM CONNECTION-BROKEN-ROUTINE THRU CB-EXIT
127 GO TO MAIN-LOOP.
128 IF RETURN-CODE = 7 OR = 8
129 PERFORM FLUSH-QUEUE
130 MOVE TO INTERMEDIATE-MESSAGE
131 MOVE "." TO PRINT-CONTROL
132 MOVE "NO ACTION TAKEN. NEXT ENTRY?" TO OUT-MESSAGE
133 PERFORM SENDER THRU SEND-EXIT
134 GO TO MAIN-LOOP.
135 IF RETURN-CODE = 9
136 GO TO WRAP-UP.
137 *

138 *T0 SIMPLIFY THE PROGRAM, ONLY EXPECTED CONDITIONS ARE PROCESSED
139 *BY THE PRECEDING CODE. ALL OTHER CONDITIONS CAUSE THE PROGRAM
140 *T0 PLACE A DIAGNOSTIC MESSAGE IN THE FILE CALLED OUTPUT (WITH
141 *THE DISPLAY STATEMENT) AND SHUT DOWN. NO DIAGNOSTIC APPEARS AT
142 *THE TERMINAL.
143 *

144 IF RETURN-CODE NOT =
145 DISPLAY "PROGRAM 8UG OR OTHER ERROR" RETURN-CODE " "

146 SECONDARY-RETURN-CODE STOP RUN.
147
148 MOVE "." TO PRINT-CONTROL.
149

150 *
151 *IF A TERMINAL USER ENTERS THE WORD END, THE USER IS
152 *DISCONNECTED BUT THE PROGRAM CONTINUES TO SERVICE OTHER
153 TERMINALS

.

154 *

155 IF COMMAND = "END"
156 PERFORM END-CONNECTION THRU EC-EXIT
157 GO TO MAIN-LOOP.
158 *

159 *IF A TERMINAL USER ENTERS THE WORD SHUTDOWN, THE USER IS
160 *DISCONNECTED AND THE PROGRAM SHUTS DOWN.
161 *

162 IF COMMAND = "SHUTDOWN"

COLUMN 1 2 3 4 5 6 7 8
1 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RNV2 Source Listing (Sheet 3 of 7)

60499500 R
8_21

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RH AOPT= 66/CDC/COCS2 83/06/16. 12.21.30. PAGE 4

163 MOVE TO INTERMEDIATE-MESSAGE

164 MOVE "." TO PRINT-CONTROL

165 MOVE "BYE FOREVER!" TO OUT-MESSAGE

166 PERFORM SENDER THRU SEND-EXIT

167
168 GO TO WRAP-UP.
169
170 *

171 *THE FOLLOWING CODE BEGINS THE INPUT-ECHOING PORTION

172 *0F THIS PROGRAM.

173 *

174 MOVE INCOMING TO OUT-MESSAGE

175 MOVE 1 TO INTERMEDIATE-MESSAGE

176 MOVE "." TO PRINT-CONTROL

177 PERFORM SENDER THRU SEND-EXIT
178 *

179 *SEND PROMPT FOR NEXT LINE, WHICH ALSO ENDS PRESENT OUTPUT

180 ^MESSAGE TO THIS TERMINAL.
181 *

182 MOVE TO INTERMEDIATE-MESSAGE

183 MOVE "." TO PRINT-CONTROL
184 MOVE "NEXT ENTRY?" TO OUT-MESSAGE

185 PERFORM SENDER THRU SEND-EXIT

186 GO TO MAIN-LOOP.
187 *

188 *THIS ENDS THE MAIN PROGRAM PORTION OF ECH0-RMV2. THE FOLLOWING

189 *PARAGRAPHS COMPRISE THE SUBROUTINES USED BY THE MAIN PROGRAM.

190 *

191

192 RECEIVER.
193 IF QUEUE-SIZE =

194 MOVE -1 TO SLEEP

195 *

196 *THE NEXT LINE PREVENTS LEFTOVER CHARACTERS FROM THE END OF THE

197 *LAST INPUT LINE FROM BEING INCLUDED IN THE TRANSFER OF THE

198 ^CURRENT (AND PRESUMABLY SHORTER) LINE.
199 *

200 MOVE SPACES TO INCOMING

201 ENTER FORTRAN-X QTGET USING INCOMING
202 GO TO RECEIVE-EXIT.

203 MOVE 1 TO SLEEP

204 MOVE SPACES TO INCOMING
205 ENTER FORTRAN-X QTGET USING INCOMING.

206 IF RETURN-CODE NOT = 1

207 GO TO RECEIVE-EXIT
208 ELSE NEXT SENTENCE.

209 QUEUE-OUTPUT-CODE.
210 MOVE TO FOUND-FLAG.
211 PERFORM QUEUE-SCAN VARYING INX-1 FROM 1 BY 1

212 UNTIL FOUND-FLAG = 1 OR INX-1 EXCEEDS QUEUE-SIZE.

213 IF FOUND-FLAG =

214 GO TO RECEIVER

215 ELSE NEXT SENTENCE.

216 SET INX-1 DOWN BY 1.

COLUMN 1 2345678
1 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 4 of 7)

• 8-22 60499500 R

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30. PAGE 5

217 *

218 *THE REMAINING CODE ATTEMPTS TO REMOVE ALL
219 *QUEUED OUTPUT FROM THE OUTPUT QUEUE, ONE ENTRY AT A

220 *TIME, REGARDLESS OF CONNECTION NUMBER. EACH SEND
221 *OPERATION IS FOLLOWED BY A RETURN TO THE POINT IN
222 *THE PROGRAM WHERE STATUS UPDATES ARE OBTAINED.
223 *

224 MOVE S-INTERMEDIATE-NESSAGE (INX-1) TO INTERMEDIATE-MESSAGE.
225 MOVE S-CONNECTION-NUMBER (INX-1) TO CONNECTION-NUMBER.
226 IF STATE (CONNECTION-NUMBER) = 3 GO TO RECEIVE-EXIT.
227 MOVE "." TO PRINT-CONTROL.
228 MOVE S-MESSAGE (INX-1) TO OUT-MESSAGE.
229 PERFORM QUEUE-COMPRESSION VARYING INX-2 FROM INX-1 BY 1

230 UNTIL INX-2 = QUEUE-SIZE.
231 SUBTRACT 1 FROM QUEUE-SIZE.
232 PERFORM SENDER THRU SEND-EXIT.
233 IF QUEUE-SIZE =

234 GO TO RECEIVER
235 ELSE GO TO QUEUE-OUTPUT-CODE.
236 RECEIVE-EXIT.
237 EXIT.
238

239
240 QUEUE-SCAN.
241 MOVE S-CONNECTION-NUMBER (INX-1) TO CONNECTION-NUMBER.
242 IF CURRENT-ABL (CONNECTION-NUMBER) EXCEEDS
243 MOVE 1 TO FOUND-FLAG.
244

245 QUEUE-COMPRESSION.
246 MOVE QUEUE-ENTRY (INX-2 + 1) TO QUEUE-ENTRY (INX-2).
247

248 FLUSH-QUEUE.
249 SET INX-1 INX-2 TO 1.
250 PERFORM FLUSH-LOOP UNTIL INX-2 EXCEEDS QUEUE-SIZE.
251 SET INX-1 DOWN BY 1.

252 SET QUEUE-SIZE TO INX-1.
253

254 FLUSH-LOOP.
255 IF S-CONNECTION-NUMBER (INX-1) = CONNECTION-NUMBER
256 SET INX-2 UP BY 1

257 ELSE
258 PERFORM CONDITIONAL-QUEUE-MOVE
259 SET INX-1 INX-2 UP BY 1

.

260 CONDITIONAL-QUEUE-MOVE.
261 IF INX-1 NOT = INX-2
262 MOVE QUEUE-ENTRY (INX-2) TO QUEUE-ENTRY (INX-1).
263
264 SENDER.
265 IF CURRENT-ABL (CONNECTION-NUMBER) =

266 PERFORM PUSH-DOWN-QUEUE GO TO SEND-EXIT.
267
268 *

269 *THE PROGRAM HAS QTRM SCAN BACKWARDS THROUGH THE MESSAGE
270 *AREA AND TRUNCATE THE MESSAGE AUTOMATICALLY. THIS PROCEDURE

COLUMN 12 3 4 5 6 7 8
1 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 5 of 7)

60499500 R 8-23

COC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/CDC/CDCS2 83/06/16. 12.21.30. PAGE 6

271 *IS COMPARABLE TO THE ONE USED BY CYBER RECORD MANAGER FOR

272 *Z-TYPE RECORDS.

273 *
274 MOVE TO MESSAGE-LENGTH.

275 ENTER FORTRAN-X QTPUT USING OUTGOING.

276 *
277 *IF NAM HAS STOPPED OUTPUT ON THE CONNECTION TEMPORARILY, OR IF

278 *THE BLOCK LIMIT HAS 8EEN EXCEEDED (AN EVENT THAT SHOULD NOT

279 *HAPPEN) FOR THE CONNECTION, THE MESSAGE IS RETURNED TO THE
280 *QUEUE FOR A LATER TRY.

281 *

282 IF RETURN-CODE = 5 PERFORM PUSH-DOWN-QUEUE.
283 SEND-EXIT.
284 EXIT.

285
286
287 PUSH-DOMN-QUEUE.
288 ADD 1 TO aUEUE-SIZE.
289 IF QUEUE-SIZE EXCEEDS 60 DISPLAY "QUEUE OVERFLOW ABORT"

290 PERFORM DUMPER VARYING INX-1 FROM 1 BY 1

291 UNTIL INX-1 EXCEEDS 60
292 STOP RUN.

293
294 MOVE INTERMEDIATE-MESSAGE TO S-INTERMEDIATE-MESSAGE
295 (QUEUE-SIZE)

.

296 MOVE CONNECTION-NUMBER TO S-CONNECTION-NUMBER (QUEUE-SIZE).

297 MOVE OUT-MESSAGE TO S-MESSAGE (QUEUE-SIZE).
298
299 *

300 *THE FOLLOWING PROMPT IS MANDATORY, BECAUSE QTRM DOES NOT
301 AUTOMATICALLY ISSUE A PROMPT TO A NEW

302 CONNECTION TO INITIALIZE THAT CONNECTION. THE FOLLOWING
303 *PROMPT IS SENT BECAUSE GOOD PROGRAMMING PRACTICE
304 ^REQUIRES A NETWORK APPLICATION PR06RAM TO IDENTIFY ITSELF

305 *T0 A TERMINAL USER.
306 *

307 DISPLAY-BANNER.

308 MOVE "." TO PRINT-CONTROL.
309 MOVE "THIS IS RMV2 USING QTRM. ENTER SOMETHING." TO
310 OUT-MESSAGE.
311 PERFORM SENDER THRU SEND-EXIT.
312 BANNER-EXIT.
313 EXIT.
314
315 *

316 *N0 CALL TO QTENDT IS NECESSARY DURING THIS PROCESSING BRANCH,

317 ^BECAUSE QTRM AUTOMATICALLY CLEANS UP THE CONNECTION WHEN IT

318 *RETURNS THE CONNECTION-BROKEN STATUS.
319 *

320 CONNECTION-BROKEN-ROUTINE.
321 DISPLAY "CONNECTION BROKEN - TERMINAL USER HUNG UP "

322 CONNECTION-NUMBER

323 DISPLAY " FAMILY " FAMILY-NAME (CONNECTION-NUMBER)
324

COLUMN 12 3 4 5 6 7 8

1 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RMV2 Source Listing (Sheet 6 of 7)

8-24 60499500 R

CDC COBOL 5.3 - LEVEL 588 SOURCE LISTING OF ECHO-RM AOPT= 66/C0C/C0CS2 83/06/16. 12.21.30. PAGE 7

325

326
327
328

329
330
331

332
333
334
335

336
337
338
339
340

341

342
343

344

345
346

347
348
349

350
351
352

353

354
355

356
357
358

359
360
361

362

363
364

365
366
367

368

DISPLAY
CB-EXIT.

EXIT.

USER " USER-NAME (CONNECTION-NUMBER)

.

THE UAIT-FOR-QUIET CALLS PROVIDE A DELAY LOOP FOR THE
NETWORK TO CLEAN UP ALL OUTSTANDING SUPERVISORY MESSAGE
TRAFFIC RELATED TO THE SHUTDOWN. WITHOUT THIS LOOP,
SOME TERMINAL CONNECTIONS WOULD RECEIVE AN
"APPLICATION FAILED" MESSAGE.
*

WRAP-UP.
PERFORM GRACEFUL-DISCONNECTS THRU GD-EXIT VARYING

CONNECTION-NUMBER
FROM 1 BY 1 UNTIL CONNECTION-NUMBER = 6.

ENTER FORTRAN-X QTCLOSE.
STOP RUN.

GRACEFUL-DISCONNECTS

.

IF STATE (CONNECTION-NUMBER) = 2 PERFORM FLUSH-QUEUE
MOVE TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "SHUTDOWN COMING" TO OUT-MESSAGE
PERFORM SENDER THRU SEND-EXIT
ENTER FORTRAN-X QTENDT.

GD-EXIT.
EXIT.

END-CONNECTION.
PERFORM FLUSH-QUEUE
MOVE TO INTERMEDIATE-MESSAGE
MOVE "." TO PRINT-CONTROL
MOVE "GOODBYE FOR NOW.." TO OUT-MESSAGE.
PERFORM SENDER THRU SEND-EXIT.
ENTER FORTRAN-X QTENDT.

EC-EXIT.
EXIT.

DUMPER.

DISPLAY S-CONNECTION-NUMBER (INX-1)
S-MESSA6E (INX-1).

COLUMN 1 2 3 4 5 6 7 8
1 2345678901 23456789012345678901 2345678901 2345678901 2345678901 2345678901 234567890

Figure 8-9. Sample Program ECH0-RNV2 Source Listing (Sheet 7 of 7)

Figure 8-10 shows the commands used to execute
ECH0-RMV2. ECH0-RMV2 exists as a direct access
source code file named RMV2.

Figure 8-11 contains a complete debug log file
listing for a single execution of ECHO-RMV2. This
log file is very similar to the one shown in sec-
tion 7 for program RMV3 because both programs use
essentially the same AIP routines for the same
functions and support the same kind of dialog.
Figure 8-12 contains a statistics file listing for -

ECHO-RMV2.

Figure 8-13 is a console printer listing for two
sequential connections using ECHO-RMV2 during a
single execution of that program. The listing
includes program-generated messages and a console
input message that is echoed back.

ATTACH,RMV2.
C0B0L5,I=RMV2.
LDSET(LIB=NETIOD)
LGO.
REWIND,ZZZZZSN.
COPY,ZZZZZSN.
DLFP(I=0)
COPY,INPUT,QTRMEXP.
REWIND,QTRMEXP.
SAVE,QTRNEXP.

Figure 8-10. ECH0-RMV2 Job Commands

60499500 R 8-25 •

RNV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00001

12.21.41.000 NETON (004750) ANAHE = RNV2 DATE = 83/06/16 NSG NO. 000001
NSUP ADDR - 001S07 HINACN =00001 MAXACN =00005

12.21.41.039 NETPUT (006634) HA =003451 TA =003501 NSG NO. 000002
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 C201 00000000000 60400400000000000000 DCTRU B

12.22.16.257 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 NSG NO. 000003
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0011

001 630000001400200 30600000000120001000 CONREQ C

002 51C75D7ADB45018 24343535365555050030 T1223 E X UW-4P
003 0000000000001 C2 00000000000000000702 GB
004 00000000023840B 00000000000010702013 H'PK #

005 xxxxxxx6DB40011 xxxxxxxxxx5555000021 xxxxx Q M B CS
006 xxxxxxxEl 880037 xxxxxxxxxxxx42000067 xxxxxxx 8 16A 7
007 000FF8FFFFFFFFF 00007770777777777777 ;';;;;;; X
008 FFF3400001FFFFF 77771500000007777777 ;;N G;;; 4
009 00O0OO000OOOF6F 00000000000000007557 .

— T"
010 7C014034460D189 37000500150430150611 4 E MDXMFI Ua D3Q

12.22.16.257 NETPUT (006634) HA =003451 TA =003501 NSG NO. 000004
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634000001400101 30640000000120000401 CONREQN C8

12.22.16.352 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLNAX =0063 HSG NO. 000005
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830700001000000 40603400000100000000 FCINIT

12.22.16.352 NETPUT (006634) HA =003451 TA =003501 NSG NO. 000006
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 834700001000000 40643400000100000000 FCINITN G

12.22.16.353 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000007
ABT =02 ADR =0001 ABN =000001 ACT =04 STATUS = 00000000 TLC = 0050

001 BD42094ED253B52 57241011235511235522 .THIS IS R =B NRS5
002 35676D55324E1ED 15263555252311160755 HV2 USING #VVUS$AH
003 45448DBED14E505 21242215575505162405 QTRN. ENTE ED >QNP
004 4AD4CF34550824E 22552317150524101116 R SONETHIN T-LSEP N
005 1EFO000000O000O 07570000000000000000 G. P

Figure 8-11. Debug Log File Listing for ECH0-RHV2 (Sheet 1 of 11)

8-26 60499500 R

1 RHV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00002

12.22.16.771 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 MSG NO. 000008
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000040 40601000000100000100 FCACK

12.23.18.412 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012 HSG NO. 000009
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0047

001 50816D385614B43 24100555160530245503 THE NEXT C P M8V 4
002 2014810D4152B49 10012201032405225511 HARACTER I 2 H T +1
003 4ED06D5531 52982 23550155252305224602 S A USER-B NPMU1R
004 48504B99DB43201 22050113463555031001 REAK-2 CHA $ 9 42
005 4810D4152BCOOOO 22010324052257000000 RACTER. H T +a

12.23.18.412 NETPUT (006634) HA =003451 TA =001614 NSG NO. 000010
ABT =01 ADR =0001 ABN =000002 ACT =04 STATUS = 00000000 TLC = 0050

001 BD4205B4E15852D 57241005551605302455 .THE NEXT =8 4AXR
002 OC80520435054AD 03100122010324052255 CHARACTER PH CPT-
003 253B41B554C54A6 11235501552523052246 IS A USER- X;A5TEJ
004 0921412E676D0C8 02220501134635550310 BREAK-2 CH a FVPH
005 0520435054AF000 01220103240522570000 ARACTER. CPT/

12.23.18.413 NETPUT (006634) HA =003451 TA =001614 MSG NO. 000011
ABT =02 ADR =0001 ABN =000003 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXR8N8
002 679000000000000 31710000000000000000 Y? &Y

12.23.18.934 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 NSG NO. 000012
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000080 40601000000100000200 FCACK

12.23.18.934 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000013
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001OOOOCO 40601000000100000300 FCACK

12.23.27.818 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000014
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800004001000000 40000004000100000000 INTRUSR

12.23.27.818 NETPUT (006634) HA =003451 TA =003501 HSG NO. 000015
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

Figure 8-11. Debug Log file Listing for ECH0-RHV2 (Sheet 2 of 11)

60499500 R 8_27

RMV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00003

001 800100001000000 40000400000100000000 INTRRSP

12.23.27.818 NETPUT (006634) HA =003451 TA =003501 NSG NO. 000016
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROHARK

12.23.27.818 NETPUT (006634) HA =003451 TA =001614 MSG NO. 000017
ABT =02 ADR =0001 ABN =000004 ACT =04 STATUS = 00000000 TLC = 0040

001 BCE3ED0435093CE 57161755010324111716 .NO ACTION <CH 5 <
002 B5404B14EBED385 55240113051657551605 TAKEN. NE KT 1N>S
003 614B45394499E40 30245505162422317100 XT ENTRY? AKE9D D
004 000000000000000 00000000000000000000

12.23.27.827 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012 MSG NO. 000018
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CA0000353220202 62400000152310401002 BIMARK

12.23.28.833 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 MSG NO. 000019
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

12.23.28.833 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 MSG NO. 000020
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000100 40601000000100000400 FCACK

12.23.47.074 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012 NSG NO. 000021
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0047

001 50816D385614B43 24100555160530245503 THE NEXT C P H8V 4
002 2014810D4152B49 10012201032405225511 HARACTER I 2 H T +1
003 4ED06D5531 52982 23550155252305224602 S A USER-B NPMU1R
004 48504B99CB43201 22050113463455031001 REAK-1 CHA $ 9 42
005 4810D4152BCOOO0 22010324052257000000 RACTER. H T +9

12.23.47.075 NETPUT (006634) HA =003451 TA =001614 MSG NO. 000022
ABT =01 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0050

001 BD4205B4E15852D 57241005551605302455 .THE NEXT =B 4AXR
002 OC80520435054AD 03100122010324052255 CHARACTER PH CPT-
003 253B41B554C54A6 11235501552523052246 IS A USER- X;A5TEJ
004 0921412E672C0C8 02220501135634550310 BREAK-1 CH a FRPH

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 3 of 11)

8-28 60499500 R

RHV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00004

005 0520435O54AF00O 01220103240522570000 ARACTER. CPT/

12.23.47.075 NETPUT (006634) HA =003451 TA =001614 MSG NO. 000023
ABT =02 ADR =0001 ABN =000006 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? 8Y

12.23.48.087 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 NSG NO. 000024
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000140 40601000000100000500 FCACK

12.23.48.087 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 NSG NO. 000025
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000180 40601000000100000600 FCACK

12.24.06.067 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000026
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800003001000000 40000003000100000000 INTRUSR

12.24.06.067 NETPUT (006634) HA =003451 TA =003501 HSG NO. 000027
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800100001000000 40000400000100000000 INTRRSP

12.24.06.067 NETPUT (006634) HA =003451 TA =003501 MSG NO. 000028
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROHARK

12.24.06.067 NETPUT (006634) HA =003451 TA =001614 MSG NO. 000029
ABT =02 ADR =0001 ABN =000007 ACT =04 STATUS = 00000000 TLC = 0040

001 8CE3ED0435093CE 57161755010324111716 .NO ACTION <CM 5 <
002 B5404B14EBED385 55240113051657551605 TAKEN. NE KT 1N>S
003 614B45394499E40 30245505162422317100 XT ENTRY? AKE9D D
004 000000000000000 00000000000000000000

12.24.06.070 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLHAX =0012 HSG NO. 000030
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CAOOOOOOOOOOOOO 62400000000000000000 BIHARK

Figure 8-11. Debug Log File Listing for ECH0-RHV2 (Sheet 4 of 11)

60499500 R 8_29 #

RHV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00005

12.24.08.398 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000031
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

12.24.08.421 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 MSG NO. 000032
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001 0001 CO 40601000000100000700 FCACK

12.24.30.931 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLHAX =0012 HSG NO. 000033
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0036

001 50816D385614B45 24100555160530245505 THE NEXT E P H8V 4
002 394499B494ED06D 16242231551123550155 NTRY IS A SI INPM
003 0921412ED24E109 02220501135511160411 BREAK INDI !A.RN
004 0C15OF4AF00000O 03012417225700000000 CATOR. APT/

12.24.30.931 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000034
ABT =01 ADR =0001 ABN =000008 ACT =04 STATUS = 00000000 TLC = 0040

001 BD4205B4E15852D 57241005551605302455 .THE NEXT =B 4AXR
002 14E51266D253B41 05162422315511235501 ENTRY IS A QNQ&H%;A
003 B4248504BB49384 55022205011355111604 BREAK IND 4$;I8
004 2430543D2BCOOO0 11030124172257000000 ICATOR. BC CR<

12.24.30.932 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000035
ABT =02 ADR =0001 ABN =000009 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRSN8
002 679000000000000 31710000000000000000 Y? SY

12.24.31.984 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 HSG NO. 000036
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000200 40601000000100001000 FCACK

12.24.31.984 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000037
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000240 40601000000100001100 FCACK $

12.24.33.521 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000038
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 800003001000000 40000003000100000000 INTRUSR

Figure 8-11. Debug Log File Listing for ECH0-RHV2 (Sheet 5 of 11)

8-30 60499500 R

RMV2 LOG FILE OUTPUT
DATE RECORDED - 83/06/16

83/06/16
PAGE 00006

12.24.33.521 NETPUT (006634) HA =003451 TA =003501

AST =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001
001 800100001000000 40000400000100000000 INTRRSP

MSG NO. 000039

12.24.33.521 NETPUT (006634) HA =003451 TA =003501
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CBOOOOOOOOOOOOO 62600000000000000000 ROMARK

NSG NO. 000040

12.24.33.522 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000010 ACT =04 STATUS = 00000000 TLC = 0040

001 BCE3ED0435093CE 57161755010324111716 .NO ACTION <CR 5 <
002 B5404B14EBED385 55240113051657551605 TAKEN. NE KT 1N>S
003 614B45394499E40 30245505162422317100 XT ENTRY? AKE9D D

004 000000000000000 00000000000000000000

NSG NO. 000041

12.24.33.525 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLNAX
ABT =03 ADR =0001 ABN =000000 ACT =02 STATUS = 00000000 TLC = 0002

001 CA0000657300202 62400000312714001002 BIHARK

=0012 NSG NO. 000042

12.24.34.042 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLNAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000000 40601000000100000000 FCACK

=0063 NSG NO. 000043

12.24.34.042 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000280 40601000000100001200 FCACK (

=0063 NSG NO. 000044

12.26.27.632 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLNAX
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0003

001 14E1 00000000000 05160400000000000000 END A

=0012 NSG NO. 000045

12.26.27.632 NETPUT (006634) HA =003451 TA =001614
ABT =02 ADR =0001 ABN =000011 ACT =04 STATUS = 00000000 TLC = 0020

001 BC73CF102645B46 57071717040231055506 .GOODBYE F <S0 BE4
002 3D2B4E3D7BEF000 17225516172757570000 OR NOV.. CR4CW>P

NSG NO. 000046

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 6 of 11)

60499500 R 8-31

RMV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00007

12.26.27.632 NETPUT (006634) HA =003451 TA =003501 MSG NO. 000047
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 C00000001 000000 60000000000100000000 LSTOFF 3

12.26.27.632 NETPUT (006634) HA =003451 TA =003501 HSG NO 000048
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

001 630600001000000 30603000000100000000 CONEND C
002 2411ADB6DB40000 11010655555555000000 IAF A CM4

12.26.27.727 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 NSG NO. 000049
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634600001000000 30643000000100000000 CONENDN CF

1
?o?

6-
n2-

1
?iL

NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 NSG NO. 000050
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0011

001 630000001400200 30600000000120001000 CONREQ C
002 51C75D7ADB45018 24343535365555050030 T1223 E X UW-4P
003 0000000000001 C2 00000000000000000702 GB
004 00000000023840B 00000000000010702013 H'PK
005 xxxxxxxxDB40011 xxxxxxxxxx55550O0021 xxxxx Q
006 xxxxxxxxx880037 xxxxxxxxxxxxxx000067 xxxxxxx 8
007 000FF8FFFFFFFFF 00007770777777777777 ;';;;;;;
008 FFF3400001FFFFF 77771500000007777777 ;;« G;;;
009 00000OOO00O0F6F 00000000000000007557 .

— Y~
010 7C014034460D189 37000500150430150611 4 E MDXHFI US D9Q

12.26.41.158 NETPUT (006634) HA =003451 TA =003501 NSG NO 000051
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 634000001400101 30640000000120000401 C0NRE8N C3

12.26.41.656 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 NSG NO. 000052
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830700001000000 40603400000100000000 FCINIT

1 «?6^1"6
!$ ^r^n NETPUT (0O6634) HA =003451 TA =003501 NSG NO. 000053ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 834700001000000 40643400000100000000 FCINITN G

12.26.41.656 NETPUT (006634) HA =003451 TA =001614 NSG NO. 000054

Figure 8-11. Debug Log File Listing for ECH0-RHV2 (Sheet 7 of 11)

* 8~32
60499500 R

RHV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00008

ABT =02 ADR =0001 ABN =000001 ACT =04 STATUS = 00000000 TLC = 0050
001 BD42094ED253B52 57241011235511235522 .THIS IS R =B NRS5
002 35676D55324E1ED 15263555252311160755 NV2 USING #VVUS*AM
003 45448DBED14E505 21242215575505162405 QTRM. ENTE ED >8NP
004 4AD4CF34550824E 22552317150524101116 R SONETHIN T-LSEP N
005 1 EF0O0O0O0O0OOO 07570000000000000000 G. P

12.26.42 .207 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLMAX =0063 NSG NO. 000055
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000040 40601 000000100000100 FCACK

12.27.27.901 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLMAX =0012 MSG NO. 000056
ABT =01 ADR =0001 ABN =000000 ACT =04 STATUS = 00010000 TLC = 0100

001 508253B494ED06D 24101123551123550155 THIS IS A P S4 M
002 51 94050481411 2D 24312005011005010455 TYPEAHEAD U 3PH -

003 5054D4BAD14E505 24052324565505162405 TEST, ENTE PTT QNP
004 489387B414ED355 22111607550123551525 RING AS NU T 8CANSU
005 0C8B5415852D053 031055240530245501 23 CH TEXT AS T -

006 B503D34C908C16D 55201723231102140555 POSSIBLE ;P=4I AH

007 50FB430554C5B4D 24175503012523055515 TO CAUSE M PCC TE4
008 54C50940C16D385 25142411201405551605 ULTIPLE NE ULP S

009 5173D22ED08C3C3 24271722135502141703 TWORK BLOC ttSR.P <

010 2D3B5540C24E16D 13235525201411160555 KS UPLINE 2S5T SAM

12.27.27 901 NETPUT (006634) HA =003451 TA =001614 NSG NO. 000057
ABT =01 ADR =0001 ABN =000002 ACT =04 STATUS = 00000000 TLC = 0110

001 BD42094ED253B41 57241011235511235501 .THIS IS A =B N.RS4

002 B546501 41 205044 55243120050110050104 TYPEAHEAD TE A PD

003 B5415352EB45394 55240523245655051624 TEST, ENT 5ASRKE9
004 15224E1ED053B4D 05221116075501235515 ERING AS H ARSAM ;N
005 54322D505614B41 25031055240530245501 UCH TEXT A T2-PV 4
006 4ED4OF4D3242305 23552017232311021405 S POSSIBLE M3TS$#
007 B543EDOC155316D 55241755030125230555 TO CAUSE 5CM S

008 35531 4250305B4E 15251424112014055516 MULTIPLE N SU1BP0CN
009 1545CF48BB4230F 05242717221355021417 ETWORK BLO E0H;B0
010 OCB4ED550309385 03132355252014111605 CKS UPLINE PKNUPO
011 000000000000000 00000000000000000000

12.27.27.902 NETPUT (006634) HA =003451 TA =001614 MSG NO. 000058
ABT =02 ADR =0001 ABN =000003 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? &Y

12.27.52. 164 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLNAX =0063 MSG NO. 000059

Figure 8-11. Debug Log File Listing for ECH0-RMV2 (Sheet 8 of 11)

60499500 R 8-33 •

RNV2 L06 FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00009

ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001
001 830200001000080 40601000000100000200 FCACK

1
?;r-i£

-1£L „^o NETGET (00o312) ACN =000° HA =003451 TA =003501 TLNAX =0063 NSG NO. 000060
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

"""uou

001 830200001 OOOOCO 40601000000100000300 FCACK

1
!o?

7'™ -169
„ NET6ETL <006326) ALN =0001 HA =003451 TA =001602 TLNAX =0012 NSG NO. 000061

ABT =01 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0100
001 50FB54205B4E154 24175524100555160524 TO THE NET PCT UN
002 5CF48BB41410309 27172213550120201411 WORK APPLI EOH;AA
003 0C15093CEB5048F 03012411171655202217 CATION PRO <KPH
004 1D204DBEDB54205 07220115575555241005 GRAN. THE QR CN5B
005 B4939414E52D253 55111624051624551123 INTENT IS 4 E-X
006 B543ED4C516D5C8 55241755230505552710 TO SEE WH ;T>TE UH
007 054B54205B5048F 01245524100555202217 AT THE PRO KT CPH
008 1D204DE13B51545 07220115702355212505 GRAN'S QUE QR * 5 E
009 54598804E10C24E 25054610011604141116 UE-HANDLIN TY A $
010 1ED0CF105B5724C 07550317040555271114 G CODE UIL AN Q 5RL

12.27.52.200 NETPUT (006634) HA =003451 TA =001614 NSG NO 000062
ABT =01 ADR =0001 ABN =000004 ACT =04 STATUS = 00000000 TLC = 0110

001 BD43ED50816D385 57241755241005551605 .TO THE NE =CNP N8
002 5173D22ED05040C 24271722135501202014 TUORK APPL U ="N
003 24305424F3AD412 11030124111716552022 ICATION PR OTS-A
004 3C748136FB6D508 17072201155755552410 OGRAN. TH #GH 06U
005 16D24E505394B49 05551116240516245511 E INTENT I RNPS 4
006 4ED50FB53145B57 23552417552305055527 S TO SEE U NPCS CM
007 20152D50816D412 10012455241005552022 HAT THE PR -P NA
008 3C74813784ED455 17072201157023552125 OGRAH'S QU #GH XNTU
009 155166201384309 05250546100116041411 EUE-HANDLI QF
010 387B433C416D5C9 16075503170405552711 NG CODE HI 43D UI
011 300000000000000 14000000000000000000 L

12.27.52.200 NETPUT (006634) HA =003451 TA =001614 MSG NO 000063
ABT =02 ADR =0001 ABN =000005 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXRQNQ
002 679000000000000 31710000000000000000 Y? &Y

1
?I?

7
"!!

-227 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLHAX =0012 NSG NO. 000064
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0022

001 32D10FB493AD508 14550417551116552410 L DO IN TH 29 4 -P
002 253B49393501383 11235511162324011603 IS INSTANC S4 P

Figure 8-11. Debug Log File Listing for ECH0-RNV2 (Sheet 9 of 11)

8-34
60499500 R

RMV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00010

003 16F000O0O000OO0 05S70000000000000000 E. P

12.27.52.674 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000065
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000100 40601000000100000400 FCACK

12.27.52.674 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000066
ABT =01 ADR =0001 ABN =000006 ACT =04 STATUS = 00000000 TLC = 0030

001 BCCB443ED24EB54 57145504175511165524 .L DO IN T <KD>RN5
002 2094ED24E4D404E 10112355111623240116 HIS INSTAN B NRNMSN
003 0C5BC0O0OO00O00 03055700000000000000 CE. Ca

12.27.53.777 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000067
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000140 40601000000100000500 FCACK

12.27.53.777 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000068
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 830200001000180 40601000000100000600 FCACK

12.27.53.778 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000069
ABT =02 ADR =0001 ABN =000007 ACT =04 STATUS = 00000000 TLC = 0020

001 BCE15852D14E512 57160530245505162422 .NEXT ENTR <AXR<tNfl

002 679000000000000 31710000000000000000 Y? &Y

12.27.54.760 NETGET (006312) ACN =0000 HA =003451 TA =003501 TLHAX =0063 HSG NO. 000070
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 8302000010001 CO 40601000000100000700 FCACK

12.28.07.750 NETGETL (006326) ALN =0001 HA =003451 TA =001602 TLHAX =0012 HSG NO. 000071
ABT =02 ADR =0001 ABN =000000 ACT =04 STATUS = 00000000 TLC = 0008

001 4C855410F5CE000 23102524041727160000 SHUTDOWN L T UN

12.28.07.751 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000072
ABT =02 ADR =0001 ABN =000008 ACT =04 STATUS = 00000000 TLC = 0020

001 BC2645B463D2156 57023105550617220526 .BYE FOREV <&E4CR
002 152D80000000000 05226600000000000000 ER! ARX

Figure 8-11. Debug Log File Listing for ECH0-RHV2 (Sheet 10 of 11)

60499500 R 8-35 •

RHV2 LOG FILE OUTPUT 83/06/16
DATE RECORDED - 83/06/16 PAGE 00011

12.28.07.751 NETPUT (006634) HA =003451 TA =001614 HSG NO. 000073
ABT =02 ADR =0001 ABN =000009 ACT =04 STATUS = 00000000 TLC = 0020

001 BD32155043D73AD 57231025240417271655 .SHUTDOWN =2 PCU
002 0CF3493870O0O00 03171511160700000000 CONING P04

12.28.07.751 NETPUT (006634) HA =003451 TA =003501 HSG NO. 000074
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0001

001 C00000001 000000 60000000000100000000 LSTOFF a

12.28.07.751 NETPUT (006634) HA =003451 TA =003501 NSG NO. 000075
ABT =03 ADR =0000 ABN =000000 ACT =01 STATUS = 00000000 TLC = 0002

001 630600001000000 30603000000100000000 CONEND C

002 2411ADB6DB40000 11010655555555000000 IAF A CM4

12.28.08.750 NETOFF (003500) DATE =83/06/16 NSG NO. 000076

Figure 8-11. Debug Log File Listing for ECH0-RHV2 (Sheet 11 of 11)

NAN STATISTICS GATHERING STARTED
NETON DATE 83/06/16. TINE 12.21.41.

NAN STATISTICS GATHERING TERNINATED
NETOFF DATE 83/06/16. TINE 12.28.09.

CPU TINE USED: 0.030 SEC

NUMBER OF PROCEDURE CALLS
NETGET 67
NETGETL 39
NETPUT 35
NETWAIT 27

NUMBER OF WORKLIST TRANSFER ATTEMPTS
SUCCESSFUL 73

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED
INPUT ABT=0 56
INPUT ABT=1 2
INPUT ABT=2 6
INPUT ABT=3 31
OUTPUT ABT=1 6
OUTPUT ABT=2 14
OUTPUT ABT=3 15

NUMBER OF ERRORS

Figure 8-12. Statistics File Listing for ECHO-RMV-2

8-36 60499500 R

THIS IS RMV2 USING QTRM. ENTER SOMETHING.
The next character is a user-break-2 character.
THE NEXT CHARACTER IS A USER-BREAK-2 CHARACTER.
NEXT ENTRY?

)

NO ACTION TAKEN. NEXT ENTRY?
The next character is a user-break-1 character.
THE NEXT CHARACTER IS A USER-BREAK-1 CHARACTER.
NEXT ENTRY?
(

NO ACTION TAKEN. NEXT ENTRY?
The next entry is a break indicator.
THE NEXT ENTRY IS A BREAK INDICATOR.
NEXT ENTRY?

NO ACTION TAKEN. NEXT ENTRY?
end
600DBYE FOR NOW..
RMV2 CONNECT TINE 00.04.11.
JSN: ABEF, NAMIAF
/bye,rmv2
UN=xxxxxxx LOG OFF 12.26.38.
JSN=ABEF SRU-S 2.007
IAF CONNECT TINE 00.00.10.
THIS IS RMV2 USING QTRH. ENTER SOMETHING.
THis is a typeahead test, entering as much text as possible to cause multiple
network blocks upline to the network application program. The intent is to see
what the program's queue-handling code will do in this instance.
THIS IS A TYPEAHEAD TEST, ENTERING AS MUCH TEXT AS POSSIBLE TO CAUSE MULTIPLE
NETWORK BLOCKS UPLINE
NEXT ENTRY?

TO THE NETWORK APPLICATION PROGRAM. THE INTENT IS TO SEE WHAT THE PROGRAM'S
QUEUE-HANDLING CODE WIL
NEXT ENTRY?
L DO IN THIS INSTANCE.
NEXT ENTRY?
shutdown
BYE FOREVER!
SHUTDOWN COMING
RMV2 CONNECT TIME 00.01.27.
JSN: ABEH, NAMIAF

Figure 8-13. ECH0-RMV2 Sample Dialog

60499500 R 8-37 •

NETWORK FAILURE AND RECOVERY

This section describes the types of network failure
that are possible. Each type of failure has its
own recovery techniques.

APPLICATION PROGRAMS
The present release of the network software makes
no provision for data recovery if NIP or NVF failure
occurs. The operator must reinitiate NAM. All
application programs that are not system control
point jobs are aborted. When the network process-
ing unit detects a network communication failure,
it indicates the condition by displaying a message
on all connected consoles.

An NPU that has failed can be dumped before it is
reloaded. Whenever an NPU fails, it is auto-
matically reloaded by the Network Supervisor (NS).
When the NPU is reloaded, it requests supervision
from the Communications Supervisor (CS). CS then
informs the NPU operator and the host operator that
it is now supervising the NPU.

LOGICAL LINK

Host failure, one of the causes of link failure, was
previously described. Link protocol failure leads
to regulation of data traffic until all message
traffic ceases on the link.

If the Network Access Method fails (specifically,
if NIP communication fails), the network software
dumps NAM's field length to a special file and
enters a message in the system dayfile. All
application programs that are not system control
point jobs are aborted, and a message is issued to
the dayfile of each job.

A logical link may recover spontaneously (regulation
level drops), or may be reinitialized by the host.
In the case of spontaneous recovery, the logical
link protocol allows a restart without loss of data.
Otherwise, all logical connections must be remade.
Trunks connecting neighboring NPUs are a special
class of links . Trunk recovery protocol is handled
by the Link Interface Package (LIP).

An aborted application program can reprieve itself
under certain conditions without being reloaded.
These conditions are described in section 6 and
appendix B. A reprieved application program must
issue a NETOFF call before it can issue a new NETON
call. A new NETON call can be successfully com-
pleted as soon as a copy of the Network Access
Method is restarted. If the reprieved program
issues the NETOFF after the Network Access Method
is restarted, the NETOFF is ignored.

TRUNK
A trunk failure is detected by a failure of the
trunk protocol. All data queued for transmission
on the trunk is discarded. The failure is reported
to the host. The trunk protocol detects the trunk
recovery. The logical link protocol determines when
the trunk can again be used for data block trans-
missions .

HOST
If a host fails, the network processing unit (NPU)
and its software must stop message processing to
that host. Host unavailability is communicated to
the other ends of all logical links. Also, the NPU
sends an informative service message to all con-
nected, consoles (and to some other types of
devices) informing the terminal that the host is
unavailable. After recovery, all logical links are
reinitialized and new connections are made.

LINE

Lines are disconnected, and CCP tables called
terminal control blocks (TCBs) associated with the I
lines are deleted. A line failure is detected by
abnormal modem status or by the line protocol
failure. The change of status is reported by CCP
to CS in the host.

The line is constantly monitered by CCP, and if the
correct modem signals are present, CCP reactivates
the line and requests TCB configuration from CS.

NETWORK PROCESSING UNIT
If an NPU fails, it must he reloaded from the host.
Off-line diagnostic tests may be desirable during
this period to help identify the cause of failure.
Failure is detected by means of a 20-second timeout
across the coupler. The NPU is forced to generate
a load request message.

TERMINAL
Terminal status is reported and messages are dis-
carded. TCBs are not released. Once terminal
failure has been detected, possible terminal
recovery is monitored by a periodic status check or
diagnostic poll made from the NPU to the terminal.
Terminal recovery status is reported to CS.

60499500 S
9-1

CHARACTER DATA INPUT, OUTPUT, AND
CENTRAL MEMORY REPRESENTATION

This appendix describes the code and character sets
used by the operating system local batch device
driver programs, magnetic tape driver programs, and
network terminal communication products. This
appendix does not describe how other products
associate certain graphic or control characters
with specific binary code values for collating or
syntax processing purposes. The main text of this
manual describes such associations that are rele-
vant to the reader.

CHARACTER SETS AND CODE
SETS

A character set differs from a code set. A char-
acter set is a set of graphic and/or control char-
acter symbols. A code set is a numbering system
used to represent each character within a character
set. Characters exist outside the computer system
and communication network; codes are received,
stored, retrieved, and transmitted within the
computer system and network.

When this manual refers to the ASCII 128-character
set or the 7-bit ASCII code set, it is referring to
the character set and code set defined as the
American National Standard Code for Information
Interchange (ASCII, ANSI Standard X3. 4-1977).
References in this manual to an ASCII character set
or an ASCII code set do not necessarily apply to
the 128-character, 7-bit ASCII code set.

GRAPHIC AND CONTROL
CHARACTERS

A graphic character can be displayed or printed.
Examples of graphic characters are the characters A
through Z, a blank, and the digits through 9. A
control character is not a graphic character; a
control character initiates, modifies, or stops a
control operation. An example of a control char-
acter is the backspace character, which moves the
terminal carriage or cursor back one space. Al-
though a control character is not a graphic char-
acter, some terminals use a graphic representation
for control characters.

CODED AND BINARY
CHARACTER DATA
Character codes can be interpreted as coded char-
acter data or as binary character data. Coded
character data is converted by default from one
code set representation to another as it enters or
leaves the computer system; for example, data
received from a terminal or sent to a magnetic tape
unit is converted. Binary character data is not
converted as it enters or leaves the system.
Character codes are not converted when moved within
the system; for example, data transferred to or
from mass storage is not converted.

The distinction between coded character data and
binary character data is important when reading or
punching cards and when reading or writing magnetic
tape. Only coded character data can be properly
reproduced as characters on a line printer. Only
binary character data can properly represent
characters on a punched card when the data cannot
be stored as display code.

The distinction between binary character data and
characters represented by binary data (such as
peripheral equipment instruction codes) is also
important. Only binary noncharacter data can
properly reproduce characters on a plotter.

CHARACTER SET TABLES

The character set tables in this appendix are
designed so that the user can find the character
represented by a code (such as in a dump) or find
the code that represents a character. To find the
character represented by a code, the user looks up
the code in the column listing the appropriate code
set and then finds the character on that line in
the column listing the appropriate character set.
To find the code that represents a character, the
user looks up the character and then finds the code
on the same line in the appropriate column.

NETWORK OPERATING
SYSTEM

NOS supports the following character sets:

CDC graphic 64-character set

CDC graphic 63-character set

ASCII graphic 64-character set

ASCII graphic 63-character set

ASCII graphic 95-character set

ASCII 128-character set

Each installation must select either a 64-character
set or a 63-character set. The differences between
the codes of a 63-character set and the codes of a
64-character set are described under Character Set
Anomalies. Any reference in this appendix to a

64-character set implies either a 63- or 64-
character set unless otherwise stated.

NOS supports the following code sets to represent
its character sets in central memory:

6-bit display code

12-bit ASCII code

6/12-bit display code

60499500 R A-l

The 6-bit display code is a set of octal codes from
00 to 77, inclusive.

The 12-bit ASCII code is the ASCII 7-bit code
right-justified in a 12-bit byte. The bits are
numbered from the right starting with 0; bits
through 6 contain the ASCII code, bits 7 through 10
contain zeros, and bit 11 distinguishes the 12-bit
ASCII 0000 code from the 12-bit 0000 end-of-line
byte. The octal values for the 12-bit codes are
0001 through 0177 and 4000.

The 6/12-bit display code is a combination of 6-bit
codes and 12-bit codes. The octal values for the
6-bit codes are 00 through 77, excluding 74 and
76. (The interpretation of the 00 and 63 codes is
described under Character Set Anomalies in this
appendix.) The octal 12-bit codes begin with
either 74 or 76 and are followed by a 6-bit code.
Thus, 74 and 76 are escape codes and are never used
as 6-bit codes within the 6/12-bit display code
set. The octal values of the 12-bit codes are:
7401, 7402, 7404, 7407, and 7601 through 7677. The
other 12-bit codes, 74xx and 7600, are undefined.

CHARACTER SET ANOMALIES

The operating system input/output software and some
products interpret two codes differently when the
installation selects a 63-character set rather than
a 64-character set. If a site uses a 63-character
set: the colon (:) graphic character is always
represented by a 6-bit display code value of 63
octal; display code 00 is undefined (it has no
associated graphic or punched card code); the per-
cent (%) graphic does not exist, and translations
produce a space (55 octal).

However, if the site uses a 64-character set, out-
put of an octal 7404 6/12-bit display code or a
6-bit display code value of 00 produces a colon.
In ASCII mode, a colon can be input only as a 7404
6/12-bit display code. Undefined 6/12-bit display
codes in output files produce unpredictable results
and should be avoided.

Two consecutive 6-bit display code values of 00 can
be confused with the 12-bit 0000 end-of-line byte
and should be avoided.

Translation of 7-bit or 12-bit ASCII to 6-bit
display code causes character folding from the
128-character ASCII set to the 63- or 64-character
ASCII subset, with the special character substitu-
tions shown in figure A-l.

INTERACTIVE TERMINAL USERS

NOS supports display consoles and teletypewriters
that use code sets other than 7-bit ASCII codes for
communication or use graphics other than those
defined In an ASCII character set. Data exchanged
with such terminals is translated as described
under Terminal Transmission Modes in this appen-
dix. The following description applies only to
terminals that use 7-bit ASCII codes and the ASCII
character set.

ASCII Data Exchange Modes

Table A-l shows the character sets and code sets
available to an Interactive Facility (IAF) user.
Table A-2 shows the octal and hexadecimal 7-bit
ASCII code for each ASCII character, and can be
used to convert codes from octal to hexadecimal.
(Certain Terminal Interface Program commands re-
quire hexadecimal specification of a 7-bit ASCII
code.)

IAF supports both normalized mode and transparent I
mode transmissions through the network. These
transmission modes are described under Terminal
Transmission Modes in this appendix. Refer to the
NOS Version 2 Reference Set, Volume 3 System Com-
mands, for additional information.

IAF treats normalized mode transmissions as coded |
character data; IAF converts these transmissions to
or from either 6-bit or 6/12-bit display code.

IAF treats transparent mode transmissions as binary
character data. Transparent mode input or output
uses 12-bit bytes, with bit 11 always set to 1; for
ASCII terminals, transparent mode input and output
occurs in the 12-bit ASCII code shown in table A-l

,

but the leftmost digit is 4 instead of 0.

When the NORMAL command is in effect, IAF assumes
that the ASCII graphic 64-character set is used and
translates all input and output to or from display
code. When the ASCII command is in effect, IAF
assumes that the ASCII 128-character set is used
and translates all input and output to or from
6/12-bit display code.

The IAF user can convert a 6/12-bit display code
file to a 12-bit ASCII code file using the NOS
FCOPY control statement. The resulting 12-bit
ASCII file can be routed to a line printer but the
file cannot be output through IAF.

12-Bit ASCII (Octal)

0140 ()
0173 «>
0174 (|)

0175 <»
0176 O

Input

63- or 64-Character Subset

6-Bit Display Code (Octal)

74 (8)

61 CD
75 (\)

62 (3)

76 <^)

Output

12-Bit ASCII (Octal)

0100 »>
0133 (D
0134 (\)

0135 (3)

0136 (^)

Figure A-1 . ASCII Character Folding

A-2 60499500 R

Terminal Transmission Modes

Coded character data can be exchanged with a con-
versational terminal in two transmission modes.
These two modes , normalized mode and transparent
mode, correspond to the types of character code
editing and translation performed by the network
software during input and output operations.

The terminal operator can change the input trans-
mission mode using a terminal definition command
(sometimes called a Terminal Interface Program
command). The application program providing the
terminal facility service can change the input or
output transmission mode.

Normalized Mode Transmissions

Normalized mode is the initial and default mode
used for both input and output transmissions. The
network software translates normalized mode data to
or from the transmission code used by the terminal
into or from the 7-bit ASCII code shown in table
A-2. (Tables A-l and A-3 through A-7 are provided
for use while coding an application program to run
under the operating system; they do not describe
character transmissions through the network.)
Translation of a specific terminal transmission
code to or from a specific 7-bit ASCII code depends
on the terminal class in which the network software
places the terminal.

The following paragraphs summarize the general case
for normalized mode data code translations. This
generalized description uses table A-2.

The reader can extend this generalized description
by using the other tables to determine character
set mapping for functions initiated from a terminal.
For example, the description under Terminal Output
Character Sets can be used to predict whether a
lowercase ASCII character stored in 6/12-bit dis-
play code can appear on an EBCDIC or external BCD
terminal; if an ASCII character passes through the
network represented in 7-bit ASCII as character
mode data, it probably can be represented on an
EBCDIC terminal, but it is always transformed to an
uppercase character on a mode 4A ASCII terminal.

Table A-2 contains the ASCII 128-character set
supported by the network software. The ASCII
96-character subset in the rightmost six columns
minus the deletion character (DEL) comprises the
graphic 95-character subset; the DEL is not a
graphic character, although some terminals graphi-
cally represent it. The graphic 64-character
subset comprises the middle four columns. Only the
characters in this 64-character subset have 6-bit
display code equivalents.

Terminals that support an ASCII graphic 64-character
subset actually use a subset of up to 96 charac-
ters, consisting of the graphic 64-character subset
and the control characters of columns 1 and 2;

often, the DEL character in column' 7 is included.
Terminals that support an ASCII graphic 95-character
or 96-character subset actually might use all 128
characters.

The hexadecimal value of the 7-bit code for each
character in table A-2 consists of the character's
column number in the table, followed by its row
number. For example, N is in row E of column 4, so

its hexadecimal value is 4E. The octal value for

the code when it is right-justified in an 8-bit

byte appears beneath the character graphic or

mnemonic. The binary value of the code consists of

the bit values shown, placed in the order given by
the subscripts for the letter b; for example, N is

1001110.

Tables A-8 through A-l 9 show the normalized mode
translations performed for each terminal class.
The parity shown in the terminal transmission codes

is the parity used as a default for the terminal

class. The parity setting actually used by a
terminal can be identified to the network software
through a TIF command.

Tables A-8 through A-19 contain the graphic and

control characters associated with the transmission
codes used by the terminal because of the terminal
class and code set in use. The network ASCII
graphic and control characters shown are those of

the standard ASCII character set associated with
the ASCII transmission codes of table A-2.

Terminal Output Character Subsets — Although the
network supports the ASCII 128-character set, some
terminals restrict output to a smaller character
set. This restriction is supported by replacing
the control characters in columns and 1 of table
A-2 with blanks to produce the ASCII graphic
95-character subset, and replacing the characters
in columns 6 and 7 with the corresponding char-
acters from columns 4 and 5, respectively, to

produce the ASCII graphic 64-character subset.

Terminal Input Character Subsets and Supersets —
Although the network supports the ASCII 128-

character set, some terminals restrict input to a

smaller character set or permit input of a larger
character set. A character input from a device
using a character set other than ASCII is converted
to an equivalent ASCII character; terminal char-
acters without ASCII character equivalents are
represented by the ASCII code for a space.

Site-written terminal-servicing facility programs
can also cause input or output character replace-
ment , conversion, or deletion by exchanging data
with the network in 6-bit display code.

Input Restrictions — The network software automat-
ically deletes codes associated with terminal
communication protocols or terminal hardware func-
tions. These codes usually represent the cancel,
backspace, linefeed, carriage return, and deletion
characters. If paper tape support is requested,
the device control 3 code also is deleted. Some of

these code deletions can be suppressed by using the
full-ASCII and special editing options (refer to

the FA and SE terminal definition parameters in the
NOS Version 2 Reference Set, Volume 3, System
Command s)

•

Output Restrictions — All codes sent by an appli-
cation program are transmitted to the terminal.
However, the 12-bit ASCII code 0037 (octal), the
6/12-bit display code 7677 (octal), and the 7-bit
ASCII code IF (hexadecimal) should be avoided in
character mode output. The network software inter-
prets the unit separator character represented by
these codes as an end-of-line indicator. The
processing of application program-supplied unit
separators causes incorrect formatting of output
and can cause loss of other output characters.

60499500 R A-3

Input Parity Processing — The network software
does not preserve the parity of the terminal trans-
mission code in the corresponding ASCII code. An
ASCII code received by the terminal-servicing
facility program always contains zero as its eighth
bit.

Line Printer Output

The printer train used on the line printer to which
a file is sent determines which batch character set
is printed. The following CDC print trains match

the batch character sets in table A-3:

Output Parity Processing — The network software
provides the parity bit setting appropriate for the
terminal being serviced, even when the software is
translating from ASCII character codes with zero
parity bit settings.

Transparent Mode Transmissions

Transparent mode is selected separately for input
and output transmissions.

During transparent mode input, the parity bit is
stripped from each terminal transmission code

| (unless the N or I parity option has been selected
by a terminal definition command), and the
transmission code is placed in an 8-bit byte
without translation to 7-bit ASCII code. Line
transmission protocol characters are deleted from
mode 4 terminal input. When the 8-bit bytes arrive
in the host computer, a terminal servicing facility
program can right-justify the bytes within a 12-bit
byte.

During transparent mode output, processing similar
to that performed for input occurs. When the host
computer transmits 12-bit bytes , the leftmost 4
bits (bits 11 through 8) are discarded. The code
in each 8-bit byte received by the network software
is not translated. The parity bit appropriate for
the terminal class is altered as indicated by the
parity option in effect for the terminal. The
codes are then transmitted to the terminal in bytes
of a length appropriate for the terminal class.
Line transmission protocol characters are inserted
into mode 4 terminal output

.

LOCAL BATCH USERS

Table A-3 lists the CDC graphic 64-character set,
the ASCII graphic 64-character set, and the ASCII
graphic 95-character set available on local batch
devices. This table also lists the code sets and
card keypunch codes (026 and 029) that represent
the characters.

The 64-character sets use 6-bit display code as
their code set; the 95-character set uses 12-bit
ASCII code. The 95-character set is composed of
all the characters in the ASCII 128-character set
that can be printed at a line printer (refer to
Line Printer Output). Only 12-bit ASCII code files
can be printed using the graphic ASCII 95-character
set. The 95-character set is represented by the
octal 12-bit ASCII codes 0040 through 0176. An
octal 12-bit ASCII code outside of the range 0040
through 0176 represents an unprintable character.

To print a 6/12-bit display code file, the user
must convert the file to 12-bit ASCII code. The
NOS FCOPY control statement is used for this con-
version.

Character Set

CDC graphic
64-character set

ASCII graphic
64-character set

ASCII graphic
95-character set

Print
Train

596-1

596-5

596-6

Low Cost System
Print Band

530-1

530-2

The characters of the default 596-1 print train are
listed in the table A-3 column labeled CDC Graphic
(64-Character Set); the 596-5 print train charac-
ters are listed in the table A-3 column labeled
ASCII Graphic (64-Character Set); and the 596-6
print train characters are listed in the table A-3
column labeled ASCII Graphic (95-Character Set).

If an unprintable character exists in a line , NOS
marks the condition by printing the number sign (#)

in the first printable column of the line. A space
replaces the unprintable character within the line.

When a transmission error occurs during the print-
ing of a line, NOS makes up to five attempts to
reprint the line. The CDC graphic print train
prints a concatenation symbol (r») in the first
column of the repeated line following a line con-
taining errors. The ASCII print trains print an
underline (_) instead of the concatenation symbol.

After the fifth attempt, the setting of sense
switch one for the batch input and output control
point determines further processing. NOS either
rewinds the file and returns it to the print queue,
or ignores the transmission errors.

Punched Card Input and Output

A character represented by multiple punches in a
single column has its punch pattern identified by
numbers and hyphens. For example, the punches
representing an exclamation point are identified as
11-0; this notation means both rows 11 and are
punched in the same column.

A multiple punch pattern that represents something
other than a character is identified by numbers and
slashes. For example, the punches representing the
end of an input file are identified as 6/7/8/9;
this notation means rows 6 through 9 are punched in
the same column.

Coded character data is exchanged with card readers
or card punches according to the translations shown
in table A-3. As indicated in the table, other
card keypunch codes are available for input of the
ASCII and CDC characters [and]. NOS cannot read
or punch the 95-character set as coded character
data.

Each site chooses either 026 or 029 as its default
keypunch code. NOS begins reading an input deck in
the default code (regardless of the character set

A-4 60499500 S

in use). The user can specify the alternate key-
punch code by punching a 26 or 29 in columns 79 and
80 of any job card, 6/7/9 card, or 7/8/9 card. The
specified translation continues throughout the job
unless the alternate keypunch code translation is
specified on a subsequent 6/7/9 or 7/8/9 card.

A 5/7/9 card with a punch in column 1 changes
keypunch code translation if the card is read
immediately before or after a 7/8/9 card. A space
(no punch) in column 2 indicates 026 translation
mode; a 9 punch in column 2 indicates 029 transla-
tion mode. The specified translation remains in
effect until a similar 5/7/9 card or a 7/8/9 card
is encountered, or the job ends.

The 5/7/9 card also allows literal input when
4/5/6/7/8/9 is punched in column 2. Literal input
can be used to read 80-column binary character data
within a punched card deck of coded character data.

Literal cards are stored with each column repre-
sented in a 12-bit byte (a row 12 punch is repre-
sented by a 1 in bit 11, row 11 by a 1 in bit 10,
row by a 1 in bit 9, and rows 1 through 9 by l's
in bits 8 through of the byte), using 16 central
memory words per card. Literal input cards are
read until another 5/7/9 card with 4/5/6/7/8/9
punched in column 2 is read. The next card can
specify a new conversion mode.

If the card following the 5/7/9, 6/7/9, or 7/8/9
card has a 7 and a 9 punched in column 1, the sec-
tion of the job deck following it contains system
binary cards (as described in the NOS Version 2
Reference Set, Volume 3, System Commands).

REMOTE BATCH USERS

Remote batch console input and output is restricted
to character mode transmission. Character mode is
described under Terminal Transmission Modes in this
appendix.

The abilities to select alternate keypunch code
translations, to read binary cards, to output
plotter files, and to print lowercase characters
depend upon the remote terminal equipment. Remote
batch terminal support under NOS is described in
the Remote Batch Facility (RBF) reference manual.

MAGNETIC TAPE USERS

The character and code sets used for reading and
writing magnetic tapes depend on whether coded or
binary data is read or written and on whether the
tape is 7-track or 9-track.

Coded Data Exchanges

Coded character data to be copied from mass storage
to magnetic tape is assumed to be stored in a
63- or 64-character 6-bit display code. The oper-
ating system magnetic tape driver program converts
the data to 6-bit external BCD code when writing a
coded 7-track tape and to 7-bit ASCII or 8-bit
EBCDIC code (as specified on the tape assignment
statement) when writing a coded 9-track tape.

Coded character data copied to mass storage from
magnetic tape is stored in a 63- or 64-character
6-bit display code. The operating system magnetic
tape driver program converts the data from 6-bit
external BCD code when reading a coded 7-track tape
and from 7-bit ASCII or 8-bit EBCDIC code (as
specified on the tape assignment statement) when
reading a coded 9-track tape.

To read and write lowercase character 7-bit ASCII
or 8-bit EBCDIC codes or to read and write control
codes, the user must assign a 7-track or 9-track
tape in binary mode.

Seven-Track Tape Input and Output

Table A-4 shows the code and character set conver-
sions between 6-bit external BCD and 6-bit display
code for 7-track tapes. Because only 63 characters
can be represented in 7-track even parity, one of
the 64 display codes is lost in conversion to and
from external BCD code.

Figure A-2 shows the differences in 7-track tape |
conversion that depend on whether the system uses
the 63-character or 64-character set. The ASCII
character for the specified character code is shown
in parentheses. The output arrows show how the
6-bit display code changes when it is written on
tape in external BCD. The input arrows show how
the external BCD code changes when the tape is read
and converted to display code.

Display Code

63-Character Set

External BCD

00
33 (0)

63 (:)

Output
16 (Z)

12 (0)

12 (0)

Input

Display Code

00
33 (0)

33 (0)

64-Character Set

Display Code External BCD

Output
00 (:)

33 (0)

63 (X)

12 (0)

12 CO)

16 CO
Input

Display Code

33 (0)

33 (0)

63 CO

Figure A-2. Magnetic Tape Code Conversions

Nine-Track Tape Input and Output

Table A-5 lists the conversions between the 7-bit
ASCII code used on the tape and the 6-bit display
code used within the system. Table A-6 lists the
conversions between the 8-bit EBCDIC code used on
the tape and the 6-bit display code used within the
system.

When an ASCII or EBCDIC code representing a lower-
case character is read from a 9-track magnetic
tape, it is converted to its uppercase character

60499500 R A-5

6-bit display code equivalent. Any EBCDIC code not
listed in table A-6 is converted to display code 55
(octal) and becomes a space. Any code between 80
(hexadecimal) and FF (hexadecimal) read from an
ASCII tape is converted to display code 00.

Binary Character Data Exchanges

Binary character data exchanged between central
memory files and magnetic tape is transferred as a
string of bytes without conversion of the byte
contents. The grouping of the bytes and the number
of bits in each byte depend on whether 7-track or
9-track tape is being used.

Seven-Track Tape Input and Output

Each binary data character code written to or read
from 7-track magnetic tape is assumed to be stored
in a 6-bit byte, such as the system uses for 63- or
64-character 6-bit display code. Seven-bit ASCII
and 8-bit EBCDIC codes can only be read from or
written to 7-track magnetic tape as binary charac-
ter data if each code is stored within a 12-bit
byte as if it were two character codes.

Nine-Track Tape Input and Output

Each binary data character code exchanged between
central memory files and 9-track magnetic tape is
assumed to be stored in an 8-bit or 12-bit byte.

During such binary data transfers , the 6/ 12-bit
display codes and 12-bit ASCII codes shown in table
A-l, the 7-bit ASCII codes shown in table A-2, or
or the 8-bit hexadecimal EBCDIC codes shown in
table A-7 can be read or written. The 7-bit ASCII
codes and 8-bit EBCDIC codes can be exchanged
either in an unformatted form or right-justified
within a zero-filled 12-bit byte of memory.

When 9-track tape is written, every pair of 12-bit
memory bytes becomes three 8-bit tape bytes; when
9-track tape is read, every three 8-bit tape bytes
become a pair of 12-bit memory bytes. Because of
the 12-bit byte pairs, codes not packed into 12-bit
bytes are exchanged in their unpacked form, while
codes packed in 12-bit bytes are exchanged in
packed form.

When an odd number of central memory words is read
or written, the lower four bits of the last 8-bit
byte (bits through 3 of the last word) are not
used. For example, three central memory words are
written on tape as 22 8-bit bytes (7.5 pairs of
12-bit bytes) and the remaining four bits are
ignored.

CODE CONVERSION AIDS

Table A-7 contains the octal values of each 8-bit
EBCDIC code right-justified in a 12-bit byte with
zero fill. This 12-bit EBCDIC code can be produced
or read using the FORM and 8-Bit Subroutines
utilities.

| A-6 60499500 R

TABLE A-l. INTERACTIVE TERMINAL CHARACTER SETS

Character Sets Code Sets

Octal Octal Octal
ASCII Graphic ASCII Character 6-Bit 6/12-Bit 12-Bit

(64-Character Set) (128-Character Set) Display Display ASCII
Code Codet Code

: colon" 00tt
A A 01 01 0101
B B 02 02 0102
C C 03 03 0103
D D 04 04 0104
E E 05 05 0105
F F 06 06 0106
G G 07 07 0107
H H 10 10 0110
I I 11 11 0111
J J 12 12 0U2
K — xK •

13 13 0113
L L 14 14 0114
M M 15 15 0115
N N 16 16 0116

17 17 0117
P P 20 20 0120
Q Q 21 21 0121
R R 22 22 0122
S S 23 23 0123
T T 24 24 0124
U U 25 25 0125
V V 26 26 0126
w W 27 27 0127
X X 30 30 0130
Y Y 31 31 0131
Z Z 32 32 0132

33 33 0060
1 1 34 34 0061
2

3
2 35 35 0062
3 36 36 0063

4 4 37 37 0064
5 5 40 40 0065
6 6 41 41 0066
7 7 42 42 0067
8 8 43 43 0070
9 9 44 44 0071
+ plus + plus 45 45 0053
- hyphen (minus) - hyphen (minus) 46 46 0055
* asterisk * asterisk 47 47 0052
/ slant / slant 50 50 0057
(opening parenthesis (opening parenthesis 51 51 0050
) closing parenthesis) closing parenthesis 52 52 0051
$ dollar sign $ dollar sign 53 53 0044
= equals = equals 54 54 0075

space space 55 55 0040
, comma , comma 56 56 0054
. period . period 57 57 0056
number sign # number sign 60 60 0043
[opening bracket [opening bracket 61 61 0133
] closing bracket
% percent signtt

] closing bracket 62
j... 62.^ 0135

% percent signtt 63tt 63tt 0045
" quotation mark " quotation mark 64 64 0042
_ underline _ underline 65 65 0137
! exclamation point ! exclamation point 66 66 0041
& ampersand & ampersand 67 67 0046

apostrophe apostrophe 70 70 0047
? question mark ? question mark 71 71 0077

60499500 R A-7|

TABLE A-l. INTERACTIVE TERMINAL CHARACTER SETS (Contd)

Character Sets Code Sets

Octal Octal Octal

ASCII Graphic ASCII Character 6-Bit 6/12-Bit 12-Bit

(64-Character Set) (128-Character Set) Display Display ASCII
Code Codet Code

< less than < less than 72 72 0074

> greater than > greater than 73 ** 73
u.-i

0076
@ commmercial at @ commercial at 74tt 7401 tt 0100

\ reverse slant \ reverse slant 75 75 0134
s\ circumflex 76

; semicolon ; semicolon 77 77 0073
•>» circumflex 76tt 7402 0136
: colontt 74tt 7404tt 0072
1

grave accent 7407 0140
a 7601 0141

b 7602 0142
c 7603 0143

d 7604 0144
e 7605 0145
f 7606 0146

g 7607 0147
h 7610 0150
i 7611 0151

J 7612 0152
k 7613 0153
1 7614 0154

m 7615 0155
n 7616 0156

7617 0157

P 7620 0160

q 7621 0161
r 7622 0162
s 7623 0163

t 7624 0164
u 7625 0165
V 7626 0166
w 7627 0167
X 7630 0170

y 7631 0171

z 7632 0172
{ opening brace 6ltt 7633 0173

I
vertical line 75 tt 7634 0174

} closing brace 62tt 7635 0175
" tilde 76 tt 7636 0176
NUL 7640 4000
SOH 7641 0001
STX 7642 0002
ETX 7643 0003
EOT 7644 0004
ENQ 7645 0005
ACK 7646 0006
BEL 7647 0007
BS 7650 0010
HT 7651 0011
LF 7652 0012
VT 7653 0013
FF 7654 0014
CR 7655 0015
SO 7656 0016
SI 7657 0017
DEL 7637 0177
DLE 7660 0020

A-8 60499500 R

TABLE A-l. INTERACTIVE TERMINAL CHARACTER SETS (Contd)

Character Sets Code Sets

ASCII Graphic
(64-Character Set)

ASCII Character
(128-Character Set)

Octal
6-Bit

Display
Code

Octal
6/12-Bit
Display
Codet

Octal
12-Bit
ASCII
Code

DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

7661

7662
7663

7664
7665
7666
7667
7670
7671

7672
7673
7674
7675
7676
7677

0021
0022
0023
0024
0025
0026
0027
0030
0031

0032
0033
0034
0035
0036
0037

TAvailable only on NOS.

"Character or code interpretation depends on context. Refer to Character Set Anomalies in the text.

60499500 R A-9 |

TABLE A-2. 7-BIT ASCII CODE AND CHARACTER SETS

h 128-Character Set

96-Character Subset

•

-Graphic 64-Character Subset—
»|

1

1 1

1

1 1

1

1

1

1

1

1

B
/

^b -b
5

S'

b
3

b
2

I'

Bits
^""""-^^ Column
Row ^"--»<~* 1 2 3 4 5 6 7

NUL
000

DLE
020

SP

040 060
@
100

P
120 140

P
160

1 1 SOH
001

DC1
021

j

041

1

061
A
101

Q
121

a
141 161

1 2 STX
002

DC2
022

II

042
2

062
B
102

R
122

b

142
r

162

1 1 3 ETX
003

DC3
023

#

043
3

063
C
103

S

123
c

143
s

163

1 4 EOT
004

DC4
024

$

044

4

064
D
104

T

124
d
144

t

164

1 1 5 ENQ
005

NAK
025

%

045
5

065

E
105

U
125

e
145

u
165

1 1 6 ACK
006

SYN
026

&

046
6

066
F

106

V

126
f

146
V
166

1 1 1 7 BEL
007

ETB
027 047

7

067
G
107

W
127

8
147

w
167

8 BS

010

CAS
030

(

050

8

070
H
110

X
130

h

150

X

170

1 9 HT
011

EM
031

)

051
9

071
I

111

Y
131

i

151
y
171

1 A LF
012

SUB
032

*

052 072
J
112

Z

132
3

152

z

172

1 1 B VT
013

ESC
033

+
053 073

K
113

[

133

k.

153
{

173

1 C FF

014
FS
034 054

<

074
L

114
\

134

1

154
1

174

1 1 D CR
015

GS

035 055 075
M
115

]

135

m
155

}

175

1 1

1 1 1

E

F

SO

016

SI
017

RS

036

US
037

056

/

057

>

076

?

077

N
116

O
117

136

T37~

n
156

o

157

176

DELt
177

'The graphic 95-•character subsset does not include DEL'; refer te Termina 1 Transm ission Modes in the text

LEGEND:

Numbers under characters a -e the octal values for the 7-bit characte r codes used within the network.

| A-10 60499500 R

TABLE A-3. LOCAL BATCH DEVICE CHARACTER SETS

Character Sets Code Sets
Card Keypunch Code

CDC
Graphic

ASCII
Graphic

ASCII
Graphic

Octal
6-Bit

Octal
6/12-Bit

Octal
12-Bit

026(64-Character (64-Character (95-Character Display Display ASCII 029

Set) Set) Set) Code Codet Code

: colon'T : colon'' oott 8-2 8-2
A A A 01 01 0101 12-1 12-1
B B B 02 02 0102 12-2 12-2
C C C 03 03 0103 12-3 12-3
D D D 04 04 0104 12-4 12-4
E E E 05 05 0105 12-5 12-5
F F F 06 06 0106 12-6 12-6
G G G 07 07 0107 12-7 12-7

H H H 10 10 0110 12-8 12-8
I I I 11 11 0111 12-9 12-9
J J J 12 12 0112 11-1 11-1
K K K 13 13 0113 11-2 11-2
L L L 14 14 0114 11-3 11-3
M M M 15 15 0115 11-4 11-4
N N N 16 16 0116 U-5 11-5

17 17 0117 11-6 11-6

P P P 20 20 0120 11-7 11-7
Q Q Q 21 21 0121 U-8 11-8
R R R 22 22 0122 11-9 11-9
S S S 23 23 0123 0-2 0-2
T T T 24 24 0124 0-3 0-3
U U U 25 25 0125 0-4 0-4
V V V 26 26 0126 0-5 0-5
W W w 27 27 0127 0-6 0-6

X X X 30 30 0130 0-7 0-7
Y Y Y 31 31 0131 0-8 0-8
Z Z z 32 32 0132 0-9 0-9

33 33 0060
1 1 l 34 34 0061 1 1
2 2 2 35 35 0062 2 2
3 3 3 36 36 0063 3 3
4 4 4 37 37 0064 4 4

5 5 5 40 40 0065 5 5
6 6 6 41 41 0066 6 6
7 7 7 42 42 0067 7 7
8 8 8 43 43 0070 8 8
9 9 9 44 44 0071 9 9
+ plus + plus + plus 45 45 0053 12 12-8-6
- hyphen (minus) - hyphen (minus) - hyphen (minus) 46 46 0055 11 11
* asterisk * asterisk * asterisk 47 47 0052 11-8-4 11-8-4

/ slant / slant / slant 50 50 0057 0-1 0-1
(open, paren. (open, paren. (open, paren. 51 51 0050 0-8-4 12-8-5
) clos. paren.) clos. paren.) clos. paren. 52 52 0051 12-8-4 11-8-5
$ dollar sign $ dollar sign $ dollar sign 53 53 0044 11-8-3 11-8-3
= equals = equals = equals 54 54 0075 8-3 8-6

space space space 55 55 0040 no punch no punch
, comma , comma , comma 56 56 0054 0-8-3 0-8-3
. period . period . period 57 57 0056 12-8-3 12-8-3

= equivalence # number sign It number sign 60 60 0043 0-8-6 8-3
[open, bracket [open, bracket [open, bracket 61 61 0133 8-7 12-8-2

°r
i2-0ttt

] clos. bracket] clos. bracket] clos . bracket 62 62 0135 0-8-2 11-8-2

% percent signTT % percent sign'' % percent sign'T 63tt 63tt 0045 8-6

° r
n-ottt

0-8-4

60499500 R A-ll |

TABLE A-3. LOCAL BATCH DEVICE CHARACTER SETS (Contd)

Character Sets

CDC
Graphic

(64-Character
Set)

i- not equals

r* concatenation

.

V logical OR

A logical AND
t superscript

4 subscript
< less than

> greater than

<^ less /equal

> greater/equal
~ logical NOT

semicolon

ASCII
Graphic

(64-Character
Set)

" quotation mark

_ underline
! exclamation pt.

& ampersand
' apostrophe
? question mark
< less than

> greater than
@ commercial at

\ reverse slant
/\ circumflex

; semicolon

ASCII
Graphic

(95-Character
Set)

" quotation mark

_ underline
! exclamation pt.

& ampersand
' apostrophe
? question mark
< less than

> greater than
@ commercial at

\ reverse slant

; semicolon
/\ circumflex
: colontt
* grave accent

a
b

c

d

e

f

g
h
i

5
k

1

m
n

o

P

q
r

s

t

u
V
w
X

y
z

{ open, brace

| vertical line

} clos. brace
~ tilde

Code Sets

Octal
6-Bit

Display
Code

64

65
66

67

70

71

72

Sit
75
76

77

76tt

74tt

Octal
6/12-Bit
Display
Codet

6ltt
75tt
62tt
76tt

"^Available only on NOS.

ttcharacter or code interpretation depends on context,

tttAvailable for input only, on NOS.

§ Available for input only, on NOS/BE or SCOPE 2.

64

65
66

67

70

71

72

740ltt

75

77

7402
++7404TT

7407
7601
7602

7603
7604
7605

7606
7607
7610
7611

7612
7613

7614
7615
7616
7617
7620
7621
7622
7623
7624
7625
7626
7627
7630
7631
7632

7633

7634
7635
7636

Octal
12-Bit
ASCII
Code

0042
0137
0041

0046
0047
0077
0074

0076
0100
0134

0073
0136
0072
0140
0141
0142

0143
0144
0145

0146
0147
0150
0151
0152
0153
0154
0155
0156
0157
0160
0161
0162
0163
0164
0165
0166
0167
0170
0171
0172
0173
0174
0175
0176

Card Keypunch Code

026

8-4
0-8-5
11-0

or

1 1-8-2 §

0-8-7
11-8-5
11-8-6

12-0

12-8-2*
11-8-7

8-5
12-8-5
12-8-6
12-8-7

029

8-7
0-8-5
12-8-7

or
8

ll-0§
12

8-5
0-8-7
12-8-4

or
12-0§

0-8-6
8-4

0-8-2
11-8-7
11-8-6

Refer to Character Set Anomalies in the text.

A-12 60499500 R

TABLE A-4. 7-TRACK CODED TAPE CONVERSIOMS

External ASCII
Octal
6-Bit External ASCII

Octal
6-Bit

BCD Character Display
Code

BCD Character Display
Code

01 1 34 40 - hyphen (minus) 46

02 2 35 41 J 12

03 3 36 42 K 13

04 4 37 43 L 14

05 5 40 44 M 15

06 6 41 45 N 16

07 7 42 46 17

10 8 43 47 P 20

11 9 44 50 Q 21

12t 33 51 R 22

13 - equals 54 52 ! exclamation point 66

14 " quotation mark 64 53 $ dollar sign 53

15 @ commercial at 74 54 * asterisk 47

16t % percent sign 63 55 apostrophe 70

17 [opening bracket 61 56 ? question mark 71

20 space 55 57 > greater than 73

21 / slant 50 60 + plus 45

22 S 23 61 A 01

23 T 24 62 B 02

24 U 25 63 C 03

25 V 26 64 D 04

26 w 27 65 E 05

27 X 30 66 F 06

30 Y 31 67 G 07

31 Z 32 70 H 10

32] closing bracket 62 71 I 11

33 , comma 56 72 < less than 72

34 (opening parenthesis 51 73 . period 57

35 _ underline 65 74) closing parenthesis 52

36 # number sign 60 75 \ reverse slant 75

37 & ampersand 67 76 " caret 76

77 ; semicolon 77

'As the text explains, conversion of these codes depeiads on whether the tape is read or written •

60499500 R A-13 |

TABLE A-5. ASCII 9-TRACK CODED TAPE CONVERSION

ASCII
6-Bit

Display Code '
'

'

Code .

Conversion'

Character and

Code Conversion'T

Code
(Hex)

Character
Code
(Hex)

Character
ASCII

Character
Code
(Octal)

20 space 00 NUL space 55

21 ! exclamation point 7D } closing brace ! exclamation point 66

22 " quotation mark 02 STX " quotation mark 64

23 # number sign 03 ETX # number sign 60

24 $ dollar sign 04 EOT $ dollar sign 53

25 % percent signs 05 ENQ Z percent sign' 63§

26 & ampersand 06 ACK & ampersand 67

27 ' apostrophe 07 BEL ' apostrophe 70

28 (opening parenthesis 08 BS (opening parenthesis 51

29) closing parenthesis 09 HT) closing parenthesis 52

2A * asterisk 0A LF * asterisk 47

2B + plus 0B VT + plus 45

2C , comma OC FF , comma 56

2D - hyphen (minus) 0D CR - hyphen (minus) 46

2E . period OE SO . period 57

2F / slant OF SI / slant 50

30 10 DLE 33

31 1 11 DC1 1 34

32 2 12 DC2 2 35

33 3 13 DC3 3 36

34 4 14 DC4 4 37

35 5 15 NAK 5 40

36 6 16 SYN 6 41

37 7 17 ETB 7 42

38 8 18 CAN 8 43

39 9 19 EM 9 44

3A : colon" 1A SUB : colon8 00 5

3B ; semicolon IB ESC ; semicolon 77

3C < less than 7B { opening brace < less than 72

3D = equals ID GS = equals 54

3E > greater than IE RS > greater than 73

3F ? question mark IF US ? question mark 71

40 @ commercial at 60 " grave accent @ commercial at 74

41 A 61 a A 01

42 B 62 b B 02

43 C 63 c C 03

44 D 64 d D 04

45 E 65 e E 05

46 F 66 f F 06

| A-14 60499500 R

TABLE A-5. ASCII 9-TRACK CODED TAPE CONVERSION (Contd)

ASCII
A_U-f *

Code
Conversion*

Character and
Code Conversion**

0~JJlt

Display Codettt

Code
(Hex)

Character
Code
(Hex)

Character
ASCII

Character
Code
(Octal)

47 G 67 S G 07

48 H 68 h H 10

49 I 69 i I 11

4A J 6A J J 12

4B K 6B k K 13

4C L 6C 1 L 14

4D M 6D m H 15

4E N 6E n N 16

4F 6F o 17

50 P 70 P P 20

51 Q 71 q Q 21

52 R 72 r R 22

53 S 73 s S 23

54 T 74 t T 24

55 U 75 u U 25

56 V 76 V V 26

57 W 77 w W 27

58 X 78 x X 30

59 Y 79 y Y 31

5A Z 7A z Z 32

5B t opening bracket 1C FS [opening bracket 61

5C \ reverse slant 7C 1 vertical line \ reverse slant 75

5D] closing bracket 01 SOH] closing bracket 62

5E " caret 7E ~ tilde n caret 76

5F _ underline 7F DEL _ underline 65

'When these characters are copied from or to a tape, the character
changes from or to ASCII to or from display code.

3 remain the same and the code

''These characters do not exist in display code. When the characters are copied from a tape, each
ASCII character is changed to an alternate display code character. The corresponding codes are also
changed. Example: When the system copies a lowercase a, 61 (hexadecimal), from tape, it writes an
uppercase A, 01 (octal).

tttA disj)lay code space always tran slates to an ASCII space.

60499500 R A-15|

TABLE A-6. EBCDIC 9-TRACK CODED TAPE CONVERSION

EBCDIC

Code
Conversion*

Code
(Hex)

Character

Character and
Code Conversion*!

Code
(Hex)

Character

6-Bit
Display Codettt

ASCII
Character

Code
(Octal)

40

4A

4B

4C

4D

4E

4F

50

5A

5B

5C

5D

5E

5F

60

61

6B

6C

6D

6E

6F

7A

7B

7C

7D

7E

7F

CI

C2

C3

C4

C5

C6

C7

C8

C9

Dl

D2

D3

space

i cent sign

. period

< less than

(opening parenthesis

+ plus

I
vertical line

& ampersand

! exclamation point

$ dollar sign

* asterisk

) closing parenthesis

; semicolon

-i logical NOT

- hyphen (minus)

/ slant

, comma

% percent sign§

_ underline

> greater than

? question mark

: colons

number sign

@ commercial at

apostrophe

= equals

" quotation mark

A

B

C

D

E

F

G

H

I

J

K

L

00

1C

0E

CO

16

0B

DO

2E

01

37

25

05

27

Al

0D

OF

0C

2D

07

IE

IF

3F

03

79

2F

ID

02

81

82

83

84

85

86

87

88

89

91

92

93

NUL

IFS

SO

{ opening brace

BS

VT

} closing brace

ACK

SOH

EOT

LF

HT

ESC

~ tilde

CR

SI

FF

ENQ

DEL

IRS

IUS

SUB

ETX

\ reverse slant

BEL

IGS

STX

a

b

c

d

e

f

g

h

i

J

k

1

A

B

C

D

E

F

G

H

I

J

K

L

space

opening bracket

period

less than

opening parenthesis

plus

exclamation point

ampersand

closing bracket

dollar sign

asterisk

closing parenthesis

semicolon

caret

hyphen (minus)

slant

comma

percent sign§

underline

greater than

question mark

colon

§

number sign

commercial at

apostrophe

equals

quotation mark

55

61

57

72

51

45

66

67

62

53

47

52

77

76

46

50

56

63§

65

73

71

00§

60

74

70

54

64

01

02

03

04

05

06

07

10

11

12

13

14

| A-16 60499500 R

TABLE A-6. EBCDIC 9-TRACK CODED TAPE CONVERSION (Contd)

EBCDIC
6-Bit

Display CodetttCode
Conversion!

Character and
Code Conversion!*

ASCII
Character

Code
(Octal)

Code
(Hex)

Character
Code
(Hex)

Character

D4 M 94 m M 15

D5 N 95 n N 16

D6 96 17

D7 P 97 P P 20

D8 Q 98 q Q 21

D9 R 99 r R 22

EO \ reverse slant 6A I vertical line \ reverse slant 75

E2 S A2 s S 23

E3 T A3 t T 24

E4 H A4 u U 25

E5 V A5 V V 26

E6 W A6 w W 27

E7 X A7 X X 30

E8 Y A8 y Y 31

E9 Z A9 z Z 32

FO 10 DLE 33

Fl 1 11 DC1 1 34

F2 2 12 DC2 2 35

F3 3 13 TM 3 36

F4 4 3C DC4 4 37

F5 5 3D NAK 5 40

F6 6 32 SYN 6 41

F7 7 26 ETB 7 42

F8 8 18 CAN 8 43

F9 9 19 EM 9 44

IWhen these characters are copied from or to a tape, the characters remain the same (except EBCDIC
codes 4A (hexadecimal), 4F (hexadecimal), 5A (hexadecimal), and 5F (hexadecimal)) and the code changes
from or to EBCDIC to or from display code.

TiThese characters do not exist in display code. When the characters are copied from a tape, each
EBCDIC character is changed to an alternate display code character. The corresponding codes are also
changed. Example: When the system copies a lowercase a, 81 (hexadecimal), from tape, it writes an
uppercase A, 01 (octal).

tTTA display code space always translates to an EBCDIC space.

"Character or code interpretation depends on context. Refer to Character Set Anomalies in the text.

60499500 R A-17 |

TABLE A-7. FULL EBCDIC CHARACTER SET

Hexa-
decimal
EBCDIC
Code

Octal
12-Bit

EBCDIC
Code

EBCDIC
Graphic or

Control
Character*

Hexa-
decimal
EBCDIC
Code

Octal
12-Bit
EBCDIC
Code

EBCDIC
Graphic or
Control

Character!

Hexa-
decimal
EBCDIC
Code

Octal
12-Bit
EBCDIC
Code

EBCDIC
Graphic or
Control
Character?

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

0000 NUL

0001 SOH

0002 STX

0003 ETX

0004 PF

0005 HT

0006 LC

0007 DEL

0010 undefined

0011 undefined

0012 SMM

0013' VT

0014 FF

0015 CR

0016 SO

0017 SI

0020 DLE

0021 DC1

0022 DC2

0023 TM

0024 RES

0025 NL

0026 BS

0027 IL

0030 CAN

0031 EM

0032 CC

0033 GUI

0034 IFS

0035 IGS

0036 IRS

0037 IUS

0040 DS

0041 SOS

0042 FS

0043 undefined

0044 BYP

0045 LF

0046 ETBB

0047 ESCE

4A

4B

4C

4D

4E

4F

50

51

thru

59

5A

5B

5C

5D

5E

5F

60

61

62

thru

69

6A

6B

6C

6D

6E

6F

70

thru

78

79

7A

7B

7C

7D

7E

7F

80

81

82

0112

0113

0114

0115

0116

0117

0120

0121

thru

0131

0132

0133

0134

0135

0136

0137

0140

0141

0142

thru

0151

0152

0153

0154

0155

0156

0157

0160

thru

0170

0171

0172

0173

0174

0175

0176

0177

0200

0201

0202

i cent sign

. period

< less than

(open, paren.

+ plus

I logical OR

& ampersand

undefined

undefined

! exclam. point

$ dollar sign

* asterisk

) clos. paren.

; semicolon

-i logical NOT

- minus

/ slant

undefined

undefined

|
vertical line

, comma

% percent sign

_ underline

> greater than

? question mark

undefined

undefined

' grave accent

: colon

number sign

@ commercial at

' apostrophe

= equals

" quotation mark

undefined

A7

A8

A9

AA

thru

BF

CO

CI

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

D4

D5

D6

D7

D8

D9

DA

thru

DF

E0

El

E2

E3

E4

0247

0250

0251

0252

thru

0277

0300

0301

0302

0303

0304

0305

0306

0307

0310

0311

0312

0313

0314

0315

0316

0317

0320

0321

0322

0323

0324

0325

0326

0327

0330

033r

0332

thru

0337

0340

0341

0342

0343

0344

x

y

z

undefined

undefined

{ open, brace

A

B

C

D

E

F

G

H

I

undefined

undefined

S

undefined

V

undefined

} clos. brace

J

K

L

M

N

P

Q

R

undefined

undefined

\ reverse slant

undefined

S

T

U

I A-18
60499500 R

TABLE A-7. FULL EBCDIC CHARACTER SET (Contd)

Hexa- Octal EBCDIC Hexa- Octal EBCDIC Hexa- Octal EBCDIC

decimal 12-Bit Graphic or decimal 12-Bit Graphic or decimal 12-Bit Graphic or

EBCDIC EBCDIC Control EBCDIC EBCDIC Control EBCDIC EBCDIC Control

Code Code Character* Code Code Character* Code Code Character*

28 0050 undefined 83 0203 c E5 0345 V

29 0051 undefined 84 0204 d E6 0346 W

2A 0052 SM 85 0205 e E7 0347 X

2B 0053 CU2 86 0206 f E8 0350 Y

2C 0054 undefined 87 0207 g E9 0351 Z

2D 0055 ENQ 88 0210 h EA 0352 undefined

2E 0056 ACK 89 0211 1 EB 0353 undefined

2F 0057 BEL 8A 0212 undefined EC 0354 H

30 0060 undefined thru thru ED 0355 undefined

31 0061 undefined 90 0220 undefined thru thru

32 0062 SYN 91 0221 J EF 0357 undefined

33 0063 undefined 92 0222 k F0 0360

34 0064 PN 93 0223 1 Fl 0361 1

35 0065 RS 94 0224 m F2 0362 2

36 0066 UC 95 0225 n F3 0363 3

37 0067 EOT 96 0226 o F4 0364 4

38 0070 undefined 97 0227 P F5 0365 5

39 0071 undefined 98 0230 q F6 0366 6

3A 0072 undefined 99 0231 r F7 0367 7

3B 0073 CU3 9A 0232 undefined F8 0370 8

3C 0074 DC4 thru thru F9 0372 9

3D 0075 NAK A0 0240 undefined FA 0372
I
vertical line

3E 0076 undefined Al 0241 ~ tilde FB 0373 undefined

3F 0077 SUB A2 0242 s thru thru

40 0100 space A3 0243 t FF 0377 undefined

41 0101 undefined A4 0244 u

thru thru A5 0245 V

49 0111 undefined A6 0246 w

tGraphic character s shown are tho se used on the IBM ISystem/ 370 standard (PN) print train. Other devices

support subsets c r variations of this chara cter gra] >hic set.

60499500 R A-19

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,

AND 18 (HASP, HPRE, 2780, 3270, AND 3780)

Terminal EBCDIC

Hex.
Code

00
01

02
03
04

05
06

07

08
09
OA
OB
OC

OD
OE
OF
10

11

12

13

14
15

16

17
18

19

1A
IB

1C

ID
IE

IF

20
21

22

23
24
25

26
27

28
29
2A
2B
2C
2D

2E
2F
30
31

32
33

34
35
36

37

38
39
3A

Octal
Code

000
001

002
003
004
005
006
007
010
Oil
012

013
014

015
016
017
020
021
022
023
024
025
026
027
030
031

032
033
034

035
036

037
040
041

042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061

062
063

064
065
066
067
070
071
072

Graph!ct Control Charactertt

NOL
SOH
STX
ETX
PF
HT
LC
DEL
undefined
undefined
SMM
VT
FF

CR
SO
SI

DLE
DC1
DC2

TM
RES
NL
BS

IL
CAN
EH
CC
CU1
IFS

IGS
IRS

IUS
DS
SOS
FS

undefined
BYP
LF
ETB or EOB
ESC or PRE
undefined
undefined
SM
CU2
undefined
ENQ
ACK
BEL
undefined
undefined
SYN
undefined
PN
RS
UC
EOT
undefined
undefined
undefined

Network ASCII (Normalized Mode Use)

Hex.
Codettt

00

01

02
03
20

09
20

7F
20

20
20
OB
OC

OD
OE
OF

10

11

12

13

20
20
08

20
18

19

20
20

1C

ID
IE

IF

20
20

20

20
20
OA
17
IB

20

20
20

20

20

05

06

07
20

20

16

20

20

20
20

04

20
20
20

Octal
Codettt

000

001
002
003
040
Oil
040
177

040
040
040
013
014

015
016
017
020
021
022

023
040
040
010
040
030
031
040
040
034
035
036

037
040
040
040
040
040
012
027
033
040
040
040
040
040
005
006

007
040
040
026
040
040
040
040

004
040
040
040

Graphic

space

space

space
space
space

Control Charactertt

space
space

space

space
space

space
space
space
space
space

space
space
space
space
space

space
space

space
space
space
space

space
space
space

null
start of header
start of text
end of text

horizontal tabulate

delete

vertical tabulate
form feed
carriage return
shift out
shift in
data link escape
device control 1

device control 2

device control 3

backspace

cancel
end of medium

file separator
group separator
record separator
unit separator

linefeed
end of transmission block
escape

enquiry
positive acknowledgment
bell

synchronous idle

end of transmission

A-20 60499500 S

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,
AND 18 (HASP, HPRE, 2780, 3270, AND 3780) (Contd)

Hex.
Code

3B

3C

3D
3E
3F

40
41
thru
49
4A
4B

4C
4D
4E

4F
50

51

thru
59

5A
5B
5C
5D

5E

5F
60

61
62
thru

69
6A
6B
6C
6D
6E

6F
70
thru
78
79

7A
7B
7C

7D

7E

7F

80

81

82
83

84
85
86

87
88
89

8A
thru
90

Terminal EBCDIC

Octal
Code

073
074
075

076
077

100
101
thru
111
112
113

114
115

116
117
120

121

thru
131

132

133
134

135

136
137

140

141
142

thru

151

152

153

154
155
156

157
160

thru
170

171

172

173
174

175

176
177

200

201

202
203

204
205
206
207

210
211

212

thru
220

Graphlct

space

<

(

+

I

&

a
b

c

d

e
f

8
h

Control Charactertt

CU3

DC4
NAK
undefined
SUB

undefined

undefined

undefined

undefined

undefined

undefined

Network ASCII (Normalized Mode Use)

Hex.
Codettt

20

14

15

20
1A

20

20

5B

2E

3C
28

2B

21

26

20

50

24
2A

29

3B

5E

2D

2F

20

7C

2C
25

5F

3E

3F
20

60

7A
23
40

27

3D
22

20

61

62

63

64

65

66

67

68

69

20

Octal
Codettt

040
024
025
040
032

040
040

133

056
074
050
053
041
046
040

135

044
052
051
073
136

055
057
040

174

054
045
137

076
077
040

140

172

043
100

047

075
042

040
141

142

143

144

145

146

147

150

151

040

Graphic

space

space

space
space

<

(

+
!

&

space

Control Charactertt

/

space

>

space

device control 4

negative acknowledgement

substitute

space
a

b

c

d

g
h
i

space

60499500 S A-21

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,

AND 18 (HASP, HPRE, 2780, 3270, AND 3780) (Contd)

Terminal EBCDIC Network ASCII (Normalized Mode Use)

Hex.
Code

Octal
Code

Graphlet Control Character"
Hex.
Codettt

Octal
Codettt

Graphic Control Character"

91 221 j
6A 152 j

92 222 k 6B 153 k

93 223 1 6C 154 1

94 224 m 6D 155 m

95 225 n 6E 156 n

96 226 6F 157 o

97 227 P 70 160 P

98 230 q 71 161 q

99 231 r 72 162 r

9A 232 undefined 20 040 space

thru thru
AO 240
Al 241

- 7E 176

A2 242 s 73 163 s

A3 243 t 74 164 t

A4 244 u 75 165 u

A5 245 V 76 166 V

A6 246 w 77 167 w

A7 247 X 78 170 X

A8 250 y 79 171 y

A9 251 z 7A 172 z

AA 252 undef ined 20 040 space

thru thru
BF 277
CO 300 {

7B 173 {

CI 301 A 41 101 A

C2 302 B 42 102 B

C3 303 C 43 103 C

C4 304 D 44 104 D

C5 305 E 45 105 E

C6 306 F 46 106 F

C7 307 G 47 107 G

C8 310 H 48 110 H

C9 311 I 49 111 I

CA 312 undefined 20 040 space

CB 313 undefined 20 040 space

CC 314 J" 20 040 space

CD 315 undefined 20 040 space

CE 316 V 20 040 space

CF 317 undefined 20 040 space

DO 320 }
7E 175 }

Dl 321 J 4A 112 J

D2 322 K 4B 113 K

D3 323 L 4C 114 L

D4 324 M 4D 115 M

D5 325 N 4E 116 N

D6 326 4F 117

D7 327 P 50 120 P

D8 330 Q 51 121 Q

D9 331 R 52 122 R

DA 332 undefined 20 040 space

thru thru
DF 337

EO 340 \ 5C 134 \

El 341 undefined 20 040 space

E2 342 S 53 123 S

E3 343 T 54 124 T

E4 344 U 55 125 U

E5 345 V 56 126 V

A-22 60499500 S

TABLE A-8. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS IN TERMINAL CLASSES 9, 14, 16, 17,
AND 18 (HASP, HPRE, 2780, 3270, AND 3780) (Contd)

Terminal EBCDIC Network ASCII (Normalized Mode Use)

Hex.
Code

Octal
Code Graph!ct Control Character!!

Code Tit
Octal
Codettt Graphic Control Character"

E6
E7
E8
E9
EA
EB
EC
ED
thru
EF
F0
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
thru
FF

346
347

350
351
352

353
354
355

thru
357

360
361

362

363

364
365
366

367
370
371

372
373

thru
377

W
X
Y
Z

rl

1

2

3

4

5

6

7

8

9

1

undefined
undefined

undefined

undefined

57

58

59

5A
20

20

20
20

30

31

32

33

34

35

36

37
38
39

20

20

127

130

131

132
040
040
040
040

060
061
062
063
064
065
066
067
070
071
040
040

W
X
Y
Z

space
space
space
space

1

2

3

4

5

6

7

8

9

space
space

IGraphic characters shown are those used on the IBM System/370 standard (PN) print train. Other devices
support subsets or variations of this character graphic set.

TTNot used for output to line printers. Translation to a space (100 octal) occurs.

TTT Shown with zero parity (eighth or uppermost bit is always zero).

60499500 S A-23

TABLE A-9. CHARACTER CODE TRANSLATIONS, ASCII CHARACTER SET CONSOLES IN

TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

ASCII
Graphic

Control Charactertt
Hex.

Codettt
Octal

Codettt
ASCII
Graphic Control Character

00 000 NUL or © 00 000 null

03 003 A ETX or © 03 003 end of text

05 005 ENQ or WRU or (e) 05 005 enquiry
06 006 ACK or RU or (f) 06 006 positive acknowledgement

09 Oil HT or (I) 09 011 horizontal tabulate

OA 012 LF or NL or 1 or (3) 0A 012 linefeed
OC 014 FF or FORM or (L) 0C 014 formfeed
OF 017 > SI or © OF 017 shift in

11 021 DC1 or X-ON or @ 11 021 device control 1

12 022 DC2 or TAPE or Q0 12 022 device control 2

14 024 DC4 or TAPE or {T) 14 024 device control 4

17 027 ETB or (§) 17 027 end transmission block
18 030 CAN or CLEAR or (x) 18 030 cancel
IB 033 ESC or ESCAPE or Q) IB 033 escape
ID 035 GS or (7) ID 035 group separator
IE 036 RS or@ IE 036 record separator
21 041 I

. 21 041 !

22 042 il 22 042 It

24 044 $ 24 044 $

27 047 r
27 047

'

28 050 (28 050 (

2B 053 + 2B 053 +
2D 055 - 2D 055 -

2E 056 . 2E 056 .

30 060 30 060
33 063 3 33 063 3

35 065 5 35 065 5

36 066 6 36 066 6

39 071 9 39 071 9

3A 072 : 3A 072 ;

3C 074 < 3C 074 <

3F 077 ? 3F 077 ?

41 101 A 41 101 A
42 102 B 42 102 B
44 104 D 44 104 D

47 107 G 47 107 G
48 110 H 48 110 H
4B 113 K 4B 113 K
4D 115 M 4D 115 M
4E 116 N 4E 116 N
50 120 P 50 120 P
53 123 S 53 123 S

55 125 u 55 125 U
56 126 V 56 126 V
59 131 Y 59 131 Y
5A 132 Z 5A 132 Z

5C 134 \ 5C 134 \

5F 137 or «- 5F 137
60 140

•v
60 140

T
63 143 c 63 143 C

65 145 e 65 145 e
66 146 f 66 146 f

69 151 i 69 151 i

6A 152 J 6A 152 3
6C 154 I 6C 154 1

6F 157 6F 157 o
71 161 q 71 161 q
72 162 r 72 162 r

A-24 60499500 R

TABLE A-9. CHARACTER CODE TRANSLATIONS, ASCII CHARACTER SET CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2O0O, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use)

Hex.
Codet

74

77

78

7B
7C

7D

7E
81

82
84

87

88
8B
8D

8E

90

93

95

96

99

9A
9C

9F
A0

A3
A5
A6
A9
AA
AC
AF
Bl

B2
B4
B7

B8
BB
BD
BE
CO
C3

C5

C6
C9

CA
CC
CF

Dl

D2
D4
D7
D8
DB
DD
DE
El

Octal
Codet

164

167

170

173
174

175
176

201

202
204

207
210
213

215

216
220
223

225
226

231
232
234
237
240

243
245

246
251
252
254

257
261

262
264
267

270
273
275

276

300
303

305
306
311

312
314
317

321

322
324
327

330
333

335
336
341

ASCII
Graphic

j or f or
|

SPACE
or

blank
t
%

&

)

>
@

C
E

F
I

J

L

Q
R
T
W
X

[

]

A or —i

Control Character!?

<D

SOH or
STX or 0$)

EOT or Q?
BELL or (CT

BS or *- or
VT or (K)

CR or RETURN or ®
SO or (N)

DLE or (?)
DC3 or X-OFF or (i)

NAK or - or (5)
SYN or LINE CLEAR or
EM or RESET or @
SUB or t or (|)
FS or (T)

US or 0-\

®

Network ASCII (Normalized Mode Use)

Hex.
Codettt

74

77

78

7B

7C

7D
7E

01

02

04

07

08
0B

0D

0E
10

13

15

16

19

1A

1C
IF

20

23
25

26

29
2A
2C
2F
31

32

34
37

38

3B
3D

3E

40
43

45
46
49

4A
4C
4F
51

52
54

57

58
5B

5D

5E
61

Octal
Codettt

164

167

170

173

174

175
176

001
002
004
007
010
013
015
016
020
023

025
026
031

032
034
037

040

ASCII
Graphic

043 #
045 %

046 &

051)

052 *

054 »

057 /

061 1

062 2

064 4

067 7

070 8

073
075

076 >

100 @
103 C

105 E

106 F
111 I

112 J
114 L
117 O
121 Q
122 R
124 T
127 W
130 X
133 [

136
J

A
141 a

space

Control Character

start of header
start of text
end of transmission
bell
backspace
vertical tabulate
carriage return
shift out
data link escape
device control 3

negative acknowledgement
synchronous idle
end of medium
substitute
file separator
unit separator

60499500 R A-25

TABLE A-9. CHARACTER CODE TRANSLATIONS , ASCII CHARACTER SET CONSOLES IN

TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Code*

Octal
Codet

ASCII
Graphic

Control Character**
Hex.

Codettt
Octal

Codettt
ASCII
Graphic

Control Character

E2

E4
E7
E8
EB
ED
EE
FO -

F3

F5
F6
F9
FA
FF

342

344
347
350
353
355
356
360
363
365
366
371
372

377

b

d

g
h
k
m
n

P
s

u
V

y
z

DEL or RUBOUT

62

64

67
68
6B
6D
6E

70
73
75
76

79
7A
7F

142

144

147

150

153

155

156

160
163

165

166

171
172

177

b

d

g
h
k

m
n

P
s

u
V

y
z

delete

t Shown with even parity, which is the default for these terminal classes (unless PA=N or PA»I, an appli-

cation program receives the same code as in normalized mode).

TTa circle around a character indicates that the character key Is pressed in conjunction with a CTL, CTRL,

CNTRL, or CONTROL key to generate the code.

tttshown with zero parity (eighth or uppermost bit is always zero).

A-26 60499500 S

TABLE A-10. CHARACTER CODE TRANSLATIONS, APL TYPEWRITER-PAIRING CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40)

Terminal ASCII (Transparent Mode Use)

Hex
Code*

74

77

78

7B

7C
7D
7E

81

82
84
87

88
8B
8D

8G
90

93

95

96

99

9A
9C
9F

A0

A3
A5
A6
A9
AA
AC
AF
Bl

B2

B4
B7

B8
BB
BD
BE

CO
C3
C5
C6
C9

CA
CC
CF

Dl
D2
D4
D7
D8
DB
DD
DE
El

Octal
Codet

164

167

170
173

174
175

176

201

202
204

207

210
213

215
216
220

223

225
226

231

232

234
237

240

243

245
246

251
252

254

257
261

262
264
267

270

273
275

276

300
303

305
306
311

312

314
317
321

322
324

327
330
333

335
336

341

ASCII-APL
Graphic

T
W
X
{

—I

}

$

SPACE
or
blank
<

>
A

»

/

1

2

4
7

8

[

X

ft

e

D
O
1

P

CO

>

A

Control Charactertt

SOH or (A)

STX or ny
EOT or (o)

BELL or {G)

BS or *- or (3)
VT or (K)

CR or RETURN or
SO or (n)

DLE or (P)

DC3 or X-0FF or
NAK or -* or (u)

SYN or LINE CLEAR or
EM or RESET or (7)
SUB or t or ©
FS or Q
US or R

®

®

Network ASCII (Normalized Mode Use)

Hex
Codettt

54

57

58

7B

6B

7D
24

01

02
04

07

08
0B
0D

0E
10

13

15

16

19

1A
1C

IF

20

3C

3D
3E

26
22

2C
2F

31

32

34
37

38

5B

66

3A
5E
63

65

5F
69

6A

6C
6F

3F
72
74

77

78
70

71
7C

41

Octal
Codettt

124

127

130
173
153

175

044
001
002
004
007

010
013
015
016
020
023

025
026
031

032
034
037
040

ASCII-APL
Graphic

T

W
X
{

space

074 <

075 =

076 >

046 A
042 t
054
057 1

061 1

062 2

064 4

067 7

070 8

133 [

146 X

072 :

136
—

143 ft

145 e
137
151

152
T
o

154
157 o
077 7

162 P
164 -

167 CO

170 =>

160 «-

161 -
174

101

>

A

Control Character

start of header
start of text
end of transmission
bell
backspace
vertical tabulate
carriage return
shift out
data link escape
device control 3
negative acknowledgement
synchronous idle
end of medium
substitute
file separator
unit separator

60499500 R A-27 •

TABLE A-10. CHARACTER CODE TRANSLATIONS, APL TYPEWRITER-PAIRING CONSOLES IN

TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H20O0, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex
Code*

Octal
Codet

ASCII-APL
Graphic Control Character"

Hex
Codettt

Octal
Codettt

ASCII-APL
Graphic

Control Character

00 000 NUL or © 00 000 null

03 003 A ETX or © 03 003 end of text

05 005 ENQ or WRU or (?) 05 005 enquiry
06 006 ACK or RU or (F) 06 006 positive acknowledgement

09 Oil HT or (i) 09 011 horizontal tabulate

0A 012 LF or NL or * or (j) 0A 012 linefeed
OC 014 FF or FORM or © OC 014 formfeed

OF 017 > SI or (5) OF 017 shift in

11 021 DC1 or X-ON or @ 11 021 device control 1

12 022 DC2 or TAPE or ® 12 022 device control 2

14 024 DC4 or TAPE or (T) 14 024 device control 4

17 027 ETB or (j?) 17 027 end transmission block
18 030 CAN or CLEAR or (x) 18 030 cancel

IB 033 ESC or ESCAPE or (J) IB 033 escape

ID 035 GS or (T) ID 035 group separator
IE 036 RSorQ IE 036 record separator
21 041 . 23 043 .

22 042 J 29 052 »

24 044 < 40 100 <

27 047 T 5D 135]

28 050 V 21 041 V
2B 053 + 25 045 +
2D 055 A. 2B 053 •5-

2E 056 * 2E 056 a

30 060 30 060
33 063 3 33 063 3

35 065 5 35 065 5

36 066 6 36 066 6

39 071 9 39 071 9

3A 072 (28 050 (

3C 074 t 3B 073 >

3F 077 \ 5C 134 \

41 101 cc 61 141 OC

42 102 1 62 142 1

44 104 f- 64 144 L

47 107 V 67 147 V
48 110 A 68 150 A
4B 113

"
27 047

s

4D 115
1

6D 155 1

4E 116 T 6E 156 T
50 120 * 2A 052 *

53 123 r 73 163 r

55 125 1 75 165 4

56 126 U 76 166 U

59 131 t 79 171 t

5A 132 c 7A 172 c
5C 134 t- 7E 176 h-

5F 137 - 2D 055 -

60 140 60 140

63 143 c 43 103 C

65 145 E 45 105 E
66 146 F 46 106 F

69 151 I 47 111 I

6A 152 J 4A 112 J
6C 154 L 4C 114 L

6F 157 4F 117

71 161 Q 51 121 Q
72 162 R 52 122 R

• A-28 60499500 R

TABLE A-10. CHARACTER CODE TRANSLATIONS, APL TYPEWRITER-FAIRING CONSOLES IN
TERMINAL CLASSES 1, 2, AND 5 THROUGH 8 (M33, 713, X3.64, H2000, T4014, M40) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex
Codet

Octal
Codet

ASCII-APL
Graphic Control Charactertt

Hex
Codettt

Octal
Codettt

ASCII-APL
Graphic Control Character

E2

E4
E7
E8
EB
ED
EE
FO
F3
F5
F6
F9
FA
FF

342

344
347
350
353

355
356
360
363
365
366
371
372
377

B

D
G
H
K
M
N
P

S

u

V
Y
z

DEL or RUBOUT

42

44

47
48

4B
4D
4E

50
53

55

56

59
5A
7F

102

104

107
110

113

115
116

120
123

125
126

131
132

177

B

D
G
H
K
M
N
P
S

U

V

Y
Z

delete

tshown with even parity, which Is the default for these terminal classes (unless PA=N, an application
program receives the same code as in normalized mode).

ttA circle around a character indicates that the character key is pressed in conjunction with a CTL, CTRL,
CNTRL, or CONTROL key to generate the code.

tTTshown with zero parity (eighth or uppermost bit is always zero).

60499500 R A-29»

TABLE A-ll. CHARACTER CODE TRANSLATIONS, APL BIT-PAIRING CONSOLES IN TERMINAL
CLASSES 1, 2, AND 5 THROUGH 8 (M33, 753, 751, H2000, T4014, AND H40)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex
Code*

Octal
Codet

ASCII-APL
Graphic

Control Character**
Hex

Codettt
Octal

Codettt
ASCII-APL
Graphic

Control Character

00 000 NUL or © 00 000 null

03 003 A ETX or © 03 003 end. of text

05 005 ENQ or WRU or (?) 05 005 enquiry
06 006 ACK or RU or (F) 06 006 positive acknowledgement

09 Oil HT or © 09 Oil horizontal tabulate
0A 012 LF or NL or J or Q) 0A 012 linefeed
OC 014 FF or FORM or © OC 014 formfeed
OF 017 > SI or ® OF 017 shift In

11 021 DC1 or X-ON or @ 11 021 device control 1

12 022 DC2 or TAPE or ® 12 022 device control 2

14 024 DC4 or TAPE or © 14 024 device control 4

17 027 ETB or (v) 17 027 end transmission block
18 030 CAN or CLEAR or (x) 18 030 cancel
IB 033 ESC or ESCAPE or (J) IB 033 escape
ID 035 GS or (T) ID 035 group separator
IE 036 RS or (A) IE 036 record separator

21 041 ..
V_x

23 043

22 042 5E 136 __
24 044 < 40 100 <

27 047 > 3E 076 >

28 050 * 22 042 *
2B 053 (28 050 (

2D 055 + 2B 053 +
2E 056 . 2E 056 .

30 060 30 060

33 063 3 33 063 3

35 065 5 35 065 5

36 066 6 36 066 6
39 071 9 39 071 9

3A 072] 5D 135]

3C 074 » 3B 073 1

3F 077 \ 5C 134 \

41 101 OC 61 141 OC

42 102 1 62 142 1
44 104 L 64 144 L

47 107 V 67 147 V
48 110 A 68 150 A
4B 113

'
27 047

*

4D 115 1 60 155 1

4E 116 T 6E 156 T
50 120 * 2A 052 *

53 123 r 73 163 r
55 125 i 75 165 i

56 126 U 76 166 U
59 131 t 79 171 t

5A 132 c 7A 172 c:

5C 134 60 140 O
5F 137 /s 26 046 <"v

60 140 - 71 161 -*

63 143 C 43 103 C

65 145 E 45 105 E
66 146 F 46 106 F
69 151 I 49 111 I

6A 152 J 4A 112 J
6C 154 L 4C 114 L

6F 157 4F 117

71 161 Q 51 121 Q
72 162 R 52 122 R

A-30 60499500 R

TABLE A-ll. CHARACTER CODE TRANSLATIONS, APL BIT-PAIRING CONSOLES IN TERMINAL

CLASSES 1, 2, AND 5 THROUGH 8 (M33, 753, 751, H20OO, T4014, AND M40) (Contd)

Terminal ASCII (Transparent Mode Use)

Hex
Codet

74

77

78

7B
7C
7D
7E

81
82
84

87

88
8B
8D

8E
90

93
95
96

99

9A
9C
9F
AO

A3
A5

A6
A9
AA
AC
AF
Bl

B2
B4
B7

B8
BB
BD
BE
CO
C3
C5

C6
C9
CA
CC
CF

Dl

D2
D4
D7

D8
DB
DD
DE
El

Octal
Codet

164

167

170
173

174
175

176
201

202
204

207

210
213

215

216
220
223

225
226

231

232
234

237

240

243
245

246
251
252
254

257
261

262

264
267

270

273
275

276
300
303

305

306
311

312

314
317

321

322
324
327

330
333

335

336
341

ASCII-APL
Graphic

T

W
X

$

}

SPACE
or
blank

<

D
O
?

P

{

X
A

Control Charactertt

Network ASCII (Normalized Mode Use)

Hex
Codettt

SOH or (A)

STX or MJ)

EOT or (d)

BELL or (G)

BS or *- or (5)
VT or (K)

CR or RETURN or (5)
SO or (5)
DLE or (?)
DC3 or X-OFF or (J)
NAK or - or (5)
SYN or LINE CLEAR or

EM or RESET or (y)

SUB or t or (z)

FS or Q
US or P)

©

54

57

58
6B
24
7D
25
01

02
04

07

08
0B
0D

0E
10

13

15

16

19

1A
1C

IF

20

3C
3D

7C

21
29

2C
2F

31

32

34
37

38

5B
2D
3A

70
63

65

5F

69

6A
6C
6F
3F

72
74

77

78
7E

7B

66
41

Octal
Codettt

124

127

130
153

044
160
045
001

002
004

007
010
013
015

016
020
023
025
026
031
032
034
037
040

074
075
174

041
051
054
057
061
062
064
067

070

133

055
072
160
143

145

137

151

152

154
157

077

162
164
167

170
176

173

146
101

ASCII-APL
Graphic

T

W
X

—I

$

}

space

<

>

)

)

/

1

2

4

7

8

[

e

\
o

o
1

p

a>

=>

i—

{

X
A

Control Character

start of header
start of text
end of transmission

bell
backspace
vertical tabulate
carriage return

shift out
data link escape
device control 3

negative acknowledgement
synchronous idle

end of medium
substitute
file separator
unit separator

60499500 R A-31

TABLE A-ll. CHARACTER CODE TRANSLATIONS, APL BIT-PAIRING CONSOLES IN TERMINAL

CLASSES 1, 2, AND 5 THROUGH 8 (M33, 753, 751, H2O0O, T4014, AND M40) (Contd)

Terminal ASCII (Transparent Hode Use) Network ASCII (Normalized Hode Use)

Codet
Octal
Codet

ASCII-APL
Graphic

Control Character!!
Hex

Codettt
Octal

Codettt
ASCII-APL
Graphic Control Character

E2

E4
E7
E8
EB
ED
EE
FO
F3
F5
F6
F9
FA
FF

342

344
347

350
353
355
356
360
363
365
366
371
372
377

B

D
G
H
K
M
N
P
S

u
V
y
z
a DEL or RUBOUT

42

44

47
48

4B
4D
4E
50

53
55

56
59
5A
7F

102

104

107

110

113

115

116
120

123
125

126

131
132

177

B

D
G
H
K
H
N
P

S

U

V
Y
Z

delete

tShown with even parity, which is the default for these terminal classes (unless PA^J or PA=I, an appli-
cation program receives the same code as in normalized mode).

IIA circle around a character indicates that the character key is pressed in conjunction with a CTL, CTRL,
CNTRL, or CONTROL key to generate the code.

'''Shown with zero parity (eighth or uppermost bit is always zero).

A-32 60499500 S

TABLE A-12. CHARACTER CODE TRANSLATIONS, ASCII CONSOLES AND LINE PRINTERS IN
TERMINAL CLASSES 10 AND 15 (2O0UT AND 734)

Terminal ASCIlt Network ASCII (Normalized Mode Use)

Hex.
Codett

Octal
Codett

Keyboard or
Printer Graphic

Input or Output Console Output Only

Graphic

ASCII CDC
Hex.
Codettt

Octal
Codettt

Hex.
Codettt

Octal
Codettt

20 040 blank blank 20 040 space

23 043 # 23 043 #

25 045 Z % 25 045 Z

26 046 & 26 046 &

29 051)) 29 051)

2A 052 * * 2A 052 *

2C 054 i > 2C 054 »

2F 057 / / 2F 057 /

31 061 1 1 31 061 1

32 062 2 2 32 062 2

34 064 4 4 34 064 4

37 067 7 7 37 067 7

38 070 8 8 38 070 8

3B 073 » > 3B 073 >

3D 075 = = 3D 075 -

3E 076 > > 3E 076 >

40 100 @ < 40 100 60 140 @

43 103 C C 43 103 63 143 C

45 105 E E 45 105 65 145 E

46 106 F F 46 106 66 146 F

49 111 I I 49 111 69 151 I

4A 112 J J 4A 112 6A 152 J

4C 114 L L 4C 114 6C 154 L

4F 117 4F 117 6F 157

51 121 Q Q 51 121 71 161 Q

52 122 R R 52 122 72 162 R

54 124 T T 54 124 74 164 T

57 127 W W 57 127 77 167 W

58 130 X X 58 130 78 170 X

5B 133 [[5B 133 7B 173 [

5D 135 I I 5D 135 7D 175 1

5E 136 •s -

1

5E 136 7E 176 /N

Al 241 ! 21 041 !

A2 242 ii
i 22 042 tl

A4 244 $ $ 24 044 $

A7 247
'

27 047 '

A8 250 ((28 050 (

60499500 R A-33 •

TABLE A-12. CHARACTER CODE TRANSLATIONS, ASCII CONSOLES AND LINE PRINTERS IN
TERMINAL CLASSES 10 AND 15 (2O0DT AND 734) (Contd)

Hex.
Codett

Terminal ASCIlt

Octal
Codett

AB 253

AD 255

AE 256

BO 260

B3 263

B5 265

B6 266

B9 271

BA 272

BC 274

BF 277

CI 301

C2 302

C4 304

C7 307

C8 310

CB 313

CD 315

CE 316

DO 320

D3 323

D5 325

D6 326

D9 331

DA 332

DC 334

DF 337

Keyboard or
Printer Graphic

ASCII

3

5

6

9

<

?

A

B

D

G

H

K

M

N

P

S

U

V

Y

Z

\

CDC

3

5

6

9

<

1

A

B

D

G

H

K

M

N

P

S

U

V

Y

Z

>

Network ASCII (Normalized Mode Use)

Input or Output

Hex.
Codettt

Octa
Codefit

2B 053

2D 055

2E 056

30 060

33 063

35 065

36 066

39 071

3A 072

3C 074

3F 077

41 101

42 102

44 104

47 107

48 110

4B 113

4D 115

4E 116

50 120

53 123

55 125

56 126

59 131

5A 132

5C 134

5E 135

Console Output Only

Hex.
Codettt

61

62

64

67

68

6B

6D

6E

70

73

75

76

79

7A

7C

7F

Octal
Codettt

X

141

142

144

147

150

153

155

156

160

163

165

166

171

172

174

177

Graphic

3

5

6

9

<

1

A

B

D

G

H

K

M

N

P

S

U

V

Y

Z

\

'Escape codes are not listed.

MShown with odd parity, the only possible parity selection for these terminal classes. ASCII control
codes 000 through 040g (without parity) are removed from input during complete editing; codes 01 8and 03g (SOH and ETX, without parity) are preserved as data in full-ASCII mode, as are escape code
sequences

.

tttsbown with zero parity (eighth or uppermost bit is always zero). During output, codes 000 through
010g are converted to code 040g (blank); codes 012s, 0158, and 037s (LF, CR, and US) are
removed. Codes for lowercase ASCII characters sent to the console are converted to the codes for
the equivalent uppercase characters supported by the terminal, as shown.

A-34 60499500 R

TABLE A-13. CHARACTER CODE TRANSLATIONS, EXTERNAL BINARY CODED (BCD) CONSOLES
AND LINE PRINTERS IN TERMINAL CLASSES 10 AND 15 (200UT and 734)

Terminal External BCDt

Hex.
Codett

10

20

23

25

26

29

2A

2C

2F

31

32

34

37

38

3B

3D

43

45

46

49

4A

4C

4F

51

52

54

57

58

5B

5D

5E

Al

A2

A4

A7

A8

AB

Octal
Codett

020

040

043

045

046

051

052

054

057

061

062

064

067

070

073

075

103

105

106

111

112

114

117

121

122

124

127

130

133

135

136

241

242

244

247

250

253

Keyboard or
Printer Graphic

ASCII

L

N

R

I

*

>

A

B

D

G

H

3

5

6

9

[

/

S

U

X

Y

#

J

K

M.

P

Q

$

CDC

L

N

R

v
*

>

A

B

D

G

H

3

5

6

9

ft

[

/

S

u

X

Y

J

K

M

P

Q

$

Network ASCII (Normalized Mode Use)

Input or Output

Hex.
Codettt

3A

2D

4C

4E

4F

52

21

2A

3E

41

42

44

47

48

2E

5C

33

35

36

.39

30

22

5B

2F

53

55

58

59

2C

5F

23

4A

4B

4D

50

51

24

Octal
Codettt

072

055

114

116

117

122

041

052

076

101

102

104

107

110

056

134

063

065

066

071

060

042

133

057

123

125

130

131

054

137

043

112

113

115

120

121

044

Console Output Only

Hex.
Codettt

6C

6E

6F

72

61

62

64

67

68

7C

7B

73

75

78

79

7F

6A

6B

6D

70

71

Octal
Codettt

154

156

157

162

141

142

144

147

150

174

173

163

165

170

171

177

152

153

155

160

161

Graphic

L

N

R

i

*

>

A

B

D

G

H

\

3

5

6

9

II

[

/

S

X

Y

#

J

K

M

P

Q

$

60499500 R
A-35

TABLE A-13. CHABACTER CODE TRANSLATIONS, EXTERNAL BINARY CODED (BCD) CONSOLES
AND LINE PRINTERS IN TERMINAL CLASSES 10 AND 15 (200UT and 734) (Contd)

Terminal External BGDt Network ASCII (Normalized Mode Use)

Hex.
Codett

Octal
Codett

Keyboard or
Printer Graphic

Input or Output Console Output Only

Graphic

ASCII CDC
Hex.
Codettt

Octal
Codettt

Hex.
Codetlt

Octal
Codettt

AD 255
i t 27 047 »

AE 256 ? i 3F 077 1

B3 263 C C 43 103 63 143 C

B5 265 E E 45 105 65 145 E

B6 266 F F 46 106 66 146 F

B9 271 I I 49 111 69 151 I

BA 272 < < 3C 074 <

BC 274)) 29 051)

BF 277 5 5
3B 073 »

CI 301 i i 31 061 1

C2 302 2 2 32 062 2

C4 304 4 4 34 064 4

C7 307 7 7 37 067 7

C8 310 8 8 38 070 8

CB 313 = = 3D 075 =

CD 315 e < 40 100 60 140 e

CE 316 z Z 25 045 z

DO 320 blank blank 20 040 space

D3 323 T T 54 124 74 164 T

D5 325 V V 56 126 76 166 V

D6 326 W W 57 127 77 167 W

D9 331 Z z 5A 132 7A 172 Z

DA 332] 1 5D 135 7D 175 1

DC 334 ((28 050 (

DF 337 & •s 26 046 &

DO 320 /s or
blank

—i or

or
none

5E,

7E

136,

176

•J

tEscape codes and control codes are not listed.

ttshown with odd parity, the only possible parity selection for these terminal classes.

tttshown with zero parity (eighth or uppermost bit is always zero). During output, codes 000 through

0378 are converted to code 320g (blank). Codes for lowercase ASCII characters sent to the console

are converted to the codes for the equivalent uppercase characters supported by the terminal, as

shown.

"input and output of this symbol is not possible on some terminals. BCD transmission convent

support the rubout symbol as an internal terminal memory parity error indicator instead.

codes 1368 and 176s are output as a blank.

ions
The ASCII

• A-36 60499500 R

TABLE A-14. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS
IN TERMINAL CLASSES 11, 12, AND 13 (711, 714, AND 714X)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

ASCII
Graphic Control Charactertt

Hex.
Codettt

Octal
Codettt

ASCII
Graphic Control CharacterS

73 163 s 73 163 s

75 165 u 75 165 u
76 166 V 76 166 V
79 171 y 79 171 y
7A 172 z 7A 172 z

7C 174 ! or t or | 7C 174
1

7F 177 DEL or RUB0UT 7F 177 delete
80 200 NUL or © 20 040 space
83 203 ETX or © 03 003 end of text"
85 205 ENQ or WRU or (E) 20 040 space
86 206 ACK or RU or (?) 20 040 space
89 211 HT or (i)

LF or NL or i or (3)

09 on horizontal tabulate
8A 212 0A 012 linefeed

or NEW LINE
8C 214 FF or FORM or (T) 0C 014 formfeed
8F 217 SI or (5) OF 017 shift in
91 221 DC1 or X-ON or @ 11 021 device control 1

92 222 DC2 or TAPE or ® 12 022 device control 2
94 224 DC4 or TAPE or © 14 024 device control 4
97 227 ETB or (5) 17 027 end transmission block
98 230 CAN or CLEAR or (x) 18 030 cancel
9B 233 ESC or ESCAPE or (T) IB 033 escape
9D 235 GS or <T) ID 035 group separator
9E 236 RS or (AT IE 036 record separator
Al 241 !

x^
21 041 !

A2 242 11
22 042 it

A4 244 $ 24 044 $
A7 247

'
27 047

A8 250 (28 050 (

AB 253 + 2B 053 +
AD 255 - 2D 055 -

AE 256 . 2E 056 .

BO 260 30 060
B3 263 3 33 063 3

B5 265 5 35 065 5
B6 266 6 36 066 6
B9 271 9 39 071 9

BA 272 : 3A 072 ;

BC 274 < 3C 074 <
BF 277 ? 3F 077 •>

CI 301 A 41 101 A
C2 302 B 42 102 B
C4 304 D 44 104 D
C7 307 G 47 107 G
C8 310 H 48 110 H
CB 313 K 4B 113 K
CD 315 M 4D 115 M
CE 316 N 4E 116 N
DO 320 P 50 120 P
D3 323 S 53 123 S
D5 325 U 55 125 U
D6 326 V 56 126 V
D9 331 Y 59 131 Y
DA 332 Z 5A 132 Z
DC 334 \ 5C 134 V
DF 337 or «- 5F 137
EO 340

N

60 140
~

E3 343 c 63 143 c

60499500 R A-37 •

TABLE A-14. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS
IN TERMINAL CLASSES 11, 12, AND 13 (711, 714, AND 714X) (Contd)

Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Code*

Octal
Codet

ASCII
Graphic

Control Charactertt
Hex.

Codettt
Octal

Codettt
ASCII
Graphic

Control Character*

01

02

04
07
08
0B
0D
0E
10

13

15

16
19

1A
1C
IF

20

23

25
26

29
2A
2C
2F

31
32

34

37
38
3B
3D
3E

40
43
45

46

49
4A
4C
4F
51

52

54
57

58

5B
5D
5E

61
62
64

67
68
6B
6D
6E
70

001

002
004
007
010
013
015
016
020
023
025
026
031

032
034
037
040

043
045
046
051
052
054
057

061
062
064
067
070
073
075
076

100

103
105

106

111
112

114

117
121

122

124
127

130

133
135
136

141
142
144
147
150

153

155
156

160

SPACE

or
blank
#

X

&

)

*

*

/

1

2

4

7

8

>

<?

C
E

F
I

J

L

Q
R
T
W
X

I

]

Aor
a
b
d

g
h
k
m
n

P

S0H or
STX or (B)

EOT or (W
BELL or (G)

BS or *- or (3)
VI or (K)

CR or RETURN or (m)

SO or (n)

DLE or (?)
DC3 or X-OFF or (§)
NAK or -» or (5)
SYN or LINE CLEAR or
EM or RESET or (?)
SUB or t or (E)

FS or Q
US or f=S

©

01

20

20
20

20

0B

0E
10

13

15

16

19

1A
1C
20
20

23

25
26

29

2A
2C
2F
31
32

34
37
38
3B
3D
3E

40
43
45

46

49
4A
4C
4F
51

52

54
57

58

5B
5D
5E

61
62
64

67
68
6B

6D
6E

70

001

040
040
040
040
013

016
020
023
025
026
031

032
034
040
040

space

space
space
space

start of header"

vertical tabulate

shift out
data link escape
device control 3

negative acknowledgment
synchronous idle
end of medium
substitute
file separator

space
space

043 #

045 %

046 &

051)

052 *

054 »

057 /

061 1

062 2

064 4

067 7

070 8

073 >

075 =

076 >

100 e

103 C
105 E
106 F
111 I
112 J
114 L
117
121 Q
122 R
124 T
127 W
130 X
133 [

135 1

136 y\

141 a
142 b
144 d

147 R
150 h
153 k
155 m
156 n
160 P

• A-38 60499500 R

TABLE A-14. CHARACTER CODE TRANSLATIONS, CONSOLES AND LINE PRINTERS

IN TERMINAL CLASSES 11, 12, AND 13 (711, 714, AND 714X) (Contd)

. Terminal ASCII (Transparent Mode Use) Network ASCII (Normalized Mode Use)

Hex.
Codet

Octal
Codet

ASCII
Graphic

Control Charactertt
Hex.
Codettt

Octal
Codettt

ASCII
Graphic

Control Characters

E5

E6

E9
EA
EC
EF
Fl
F2

F4
F7
F8
FB
FD
FE

345

346

351

352

354
357
361

362

364
367

370
373
375

376

e

f

i

i

1

q
r

t
w
X
{

}

~ or —

1

65

66

69
6A
6C
6F
71

72

74

77

78
7B
7D

7E

145

146

151

152

154

157

161

162

164

167

170

173
175

176

e

f

i

i

1

q
r

t

w
X

{

}

tShown with odd parity, the only possible parity selection for these terminal classes.

MA circle around a character indicates that the character key is pressed in conjunction with a CTL, CTRL,
CNTRL, or CONTROL key to generate the code.

tttShown with zero parity (eighth or uppermost bit is always zero) .

^Converted to a space (0408) within a batch printer file.

"Converted to a space (O4O3) during complete editing.

60499500 S A-39

TABLE A-15. ASCII CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741)

Terminal EBCD Network ASCII (Norma llzed Mode Use)

Hex.
Codet

Octal
Codet

EBCD
Graphictt

Control Character
Hex.

Codettt

Octal
Codettt

ASCII

Graphic
Control Character

01 001 or - 5F or 2D 137 or 055 or -

02 002 J or @ 21 or 40 140 or 100
%
or @

04 004 * or 8 2A or 38 052 or 070 * or 8

07 007 H or h 48 or 68 110 or 150 H or h

08 010 : or 4 3A or 34 072 or 064 : or 4

OB 013 D or d 44 or 64 104 or 144 D or d

OD 015 RES or RESTORE 00 000 null

OE 016 BY or BYPASS 00 000 null

10 020 < or 2 3C or 32 074 or 062 < or 2

13 023 B or b 42 or 62 102 or 142 B or b

15 025 undefined 00 000 null

16 026 undefined 00 000 null

19 031 or o 4F or 6F 117 or 157 or o

1A 032 W or w 57 or 77 127 or 167 W or w
shift out*
shift in§

1C 034 UCS or UPPERCASE 0E 016

IF 037 LCS or LOWERCASE OF 017

20 040 = or 1 3D or 31 075 or 061 = or 1

23 043 A or a 41 or 61 101 or 141 A or a

25 045 R or r 52 or 72 122 or 162 R or r

26 046 Z or z 5A or 7A 132 or 172 Z or z

29 051 N or n 4E or 6E 116 or 156 N or n

2A 052 V or v 56 or 76 126 or 166 V or v

2C 054 RO or READER STOP 14 024 device control 4

2F 057 HT or TAB 09 011 horizontal tabulate

31 061 L or 1 4C or 6C 114 or 154 L or 1

32 062 T or t 54 or 74 124 or 164 T or t

34 064 " or # 22 or 23 042 or 043 = or If

37 067 —lor . 5E or 2E 136 or 056 .*. or .

38 070 > or 7 3E or 37 076 or 067 > or 7

3B 073 G or g 47 or 67 107 or 147 G or g
3D 075 IL or IDLE or NULL 00 000 null

start of header"3E 076 PRE or PREFIX 01 001

40 100 space 20 040 space

43 103 + or & 2B or 26 053 or 046 + or &

45 105 Q or q 51 or 71 121 or 161 Q or q

46 106 Y or y 59 or 79 131 or 171 Y or y
49 111 M or m 4D or 6D 115 or 155 M or to

4A 112 U or u 55 or 75 125 or 165 U or u

4C 114 PN or PUNCH ON 11 021 device control 1 (tape on)

4F 117 PF or PUNCH OFF 13 023 device control 3 (tape off)

51 121 K or k 4B or 6B 113 or 153 K or k

52 122 S or s 53 or 73 123 or 163 S or s

54 124) or 29 or 30 051 or 060) or

57 127 undefined 00 000 null

58 130 ' or 6 27 or 36 047 or 066 ' or 6

5B 133 F or f 46 or 66 106 or 146 F or f

5D 135 BS or BACKSPACE 08 010 backspace
end transmission block'5E 136 EOB 17 027

61 141 J or j 4A or 6A 112 or 152 J or j

62 142 ? or / 3F or 2F 077 or 057 ? or /

64 144 (or 9 28 or 39 050 or 071 (or 9

67 147 I or i 49 or 69 111 or 151 I or i

68 150 % or 5 25 or 35 045 or 065 % or 5

6B 153 E or e 45 or 65 105 or 145 E or e

6D 155 NL or CR or RETURN 0D 015 carriage return
6E 156 LF or LINE FEED 0A 012 linefeed

A-40 60499500 R

TABLE A-15. ASCII CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal EBCD

Hex.
Codet

Octal
Codet

EBCD
Graphictt

Control Character

Network ASCII (Normalized Mode Use)

Hex.
Codettt

Octal
Codettt

ASCII
Graphic

Control Character

70

73

75

76

79

7A

7C
7F

00

00

00

00
3D
3D
3D
3D
3D

3D

3D
3D

3D

160
163

165

166
171

172

174
177

000

000
000
000
075

075
075
075
075

075
075
075

075

; or 3
C or c

! or $

I or ,

P or p
X or x

space

space
space
space

2C
70

78
EOT
DEL

IL or IDLE or NULL88

IL or IDLE or NULL§|
IL or IDLE or NULL88

IL or IDLE or NULL™
IL or IDLE or NULL85

IL or IDLE or NULL§§
IL or IDLE or NULL§§
IL or IDLE or NULL§§

IL or IDLE or

3B or 33

43 or 63

21 or 24

7C or
50 or
58 or
04
T!
5B thru 5D

60
7B
7D or 7E
02

03
05
07
0B or 0C

063
143
044

10

12

14 thru 16

18 thru IF

073 or
103 or
041 or
174 or 054
120 or 160

130 or 170

004
177
133 thru
135
140
173

175 or 176
002
003

005
007
013 or 014

020
022
024 thru
026

030 thru
037

; or 3

C or c

! or $
! or ,

P or p
X or x

[or \

or]

{

} or ~

end of transmission8
delete

start of text
end of text
enquire
bell
vertical tabulate
or formfeed
data link escape
device control 2

device control 4,
negative acknowledge,
or synchronize
cancel, end of media,
substitute, escape,
file separator,
group separator,
record separator,
or unit separator

tshown with odd parity; odd parity is the default for this terminal class.

''Each input line Is assumed to begin in lowercase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect until another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During output, case is preserved by Insertion of case shift codes where needed.

tTfshown with zero parity (eighth or uppermost bit Is always zero).

8Not transmitted to the host computer after translation during input.

880utput translation only.

60499500 R A-4K

TABLE A-16. AFL CHARACTER CODE TRANSLATIONS, KBCD CONSOLES IN TERMINAL CLASS 4 (2741)

Terminal EBCD-API- Network ASCII (Normalized Mode Use)

Hex. Octal EBCD-APL Hex, Octal ASCII--APL

Codet Codet Graphictt
Control Character

Codettt Codettt Graphic
Control Character

01 001 or + 5F or 2D 137 or 053 or +
02 002 -» or *- 71 or 70 161 or 160 -» or «.

04 004 t or 8 22 or 38 042 or 070 * or 8
07 007 A or H 68 or 48 150 or 110 A or H
08 010 < or 4 40 or 34 100 or 064 < or 4

OB 013 L or D 64 or 44 144 or 104 l. or D
OD 015 undefined 00 000 null
OE 016 undefined 00 000 null
10 020 - or 2 2D or 32 055 or 062 - or 2

13 023 i or B 42 or 62 142 or 102 1 or B
15 025 undefined 00 000 null
16 026 undefined 00 000 null
19 031 o or 6F or 4F 157 or 117 o or
1A 032 w or W 77 or 57 167 or 127 (O or W
1C 034 UCS or UPPERCASE 0E 016 shift out§
IF 037 LCS or LOWERCASE OF 017 shift ln§
20 040 " or 1 22 or 31 042 or 061 " or 1

23 043 oc or A 61 or 41 141 or 101 oc or A
25 045 P or R 72 or 52 162 or 122 P or R
26 046 c or Z 7A or 5A 172 or 132 <= or Z

29 051 t or N 6E or 4E 156 or 116 T or N
2A 052 U or V 76 or 56 166 or 126 or V
2C 054 undefined 00 000 null
2F 057 HT or TAB 06 006 horizontal tabulate
31 061 D or L 6C or 4C 154 or 114 or L
32 062 ~ or T 74 or 54 164 or 124 ~ or T
34 064) or] 29 or 5D 051 or 135) or]

37 067 : or . 3A or 2E 072 or 056 : or .

38 070 > or 7 3E or 37 076 or 067 > or 7

3B 073 V or G 67 or 47 147 or 107 V or G
3D 075 IL or IDLE or NULL 00 000 null
3E 076 PRE or PREFIX IB 033 escape
40 100 space 20 040 space
43 103 + or X 25 or 66 045 or 146 + or X
45 105 ? or Q 3F or 51 077 or 121 ? or Q
46 106 t or Y 79 or 59 171 or 131 t or Y
49 111 1 or M 6D or 4D 155 or 115 1 or M
4A 112 \ or 75 or 55 165 or 125 i or U
4C 114 undefined 00 000 null
4F 117 undefined 00 000 null
51 121 -H or K 6B or 4B 153 or 113 —I or K
52 122 r or s 73 or 53 163 or 123 r or S

54 124 ^ or 26 or 30 046 or 060 /\ or
57 127 undefined 00 000 null
58 130 > or 6 7C or 36 174 or 066 > or 6

5B 133 — or F 5E or 46 136 or 106 — or F
5D 135 BS or BACKSPACE 08 010 backspace

end transmission block'5E 136 E0B 17 027
61 141 o or J 6A or 4A 152 or 112 ° or J
62 142 \ or / 5C or 2F 134 or 057 \ or /

64 144 .v or 9 21 or 39 041 or 071 .v or 9

67 147 \ or I 69 or 49 151 or 111 I or I

68 150 = or 5 3D or 35 075 or 065 « or 5

6B 153 C or E 65 or 45 145 or 105 e or E
6D 155 NL or CR or RETURN 0D 015 carriage return
6E 156 LF or LINE FEED 0A 012 line feed
70 160 < or 3 3C or 33 074 or 063 < or 3
73 163 n or C 63 or 43 143 or 103 ft or C
75 165 (or E 28 or 5B 050 or 133 (or [

76 166 ; or > 3B or 2C 073 or 054 ; or >

79 171 * or p 2A or 50 052 or 120 * or P
7A 172 z> or X 78 or 58 170 or 130 => or X

A-42 60499500 R

TABLE A-16. APL CHARACTER CODE TRANSLATIONS, EBCD CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal EBCD-APL Network ASCII (Normalized Mode Use)

Hex. Octal EBCD-APL Hex. Octal ASCII-APL
Code* Codet Graphictt

Control Character
Codeftt Codettt Graphic

Control Character

7C 174 EOT 04 004 end of transmission?
7F 177 DEL 7F 177 delete
00 000 space" 27 047

'

00 000 space|| 60 140 O
00 000 space" 7B 173 {

CO 000 space§§ 7D 175 }

3D 075 IL or IDLE or NULL§§ 02 002 start of text
3D 075 IL or IDLE or NULLf| 03 003 end of text
3D 075 IL or IDLE or NULl||

IL or IDLE or NULL||
IL or IDLE or NULL§§

05 005 enquire
3D 075 07 007 bell
3D 075 0B or 0C 013 or 014 vert Leal tabulate

or form feed
3D 075 IL or IDLE or NULL65

IL or IDLE or NULL^

10 thru 16 020 thru
026

data link escape,
device control 1 thru
device control 4,

negative acknowledge,
or synchronize

3D 075 18 thru IF 030 thru cancel, end of media,
037 substitute, escape

file separator,
group separator,
record separator,
or unit separator

'Shown with odd parity; odd parity is the defflult for this terminal class.

t*Each input line is assumed to begin in lowerc.ase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs , It remains in effect until another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During out]>ut, case is preserved by Insertioni of case shift codes where needed.

T' 'Shown with zero parity (eighth or uppermost bit is always zero).

"Not transm .tted to the host computer after translation during Input.

"^Output traiis latIon only.

60499500 R A-43

TABLE A-17. ASCII CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741)

Terminal Correspondence Code Network ASCII (Normalized Mode Use)

Hex. Octal Correspondence Hex. Octal ASCII
Codet Codet Code Graphictt

Control Character
Codettt Codetff Graphic

Control Character

01 001 1/4 or 1/2 5B or 5D 137 or 135 [or]

02 002 T or t 54 or 74 124 or 164 T or t

04 004 $ or 4 24 or 34 044 or 064 $ or 4

07 007 ? or / 3F or 2F 077 or 057 ? or /

08 010 % or 5 25 or 35 045 or 065 Z or 5

0B 013 P or p 50 or 70 120 or 160 P or p
OD 015 RES or RESTORE 00 000 null
OE 016 BY or BYPASS 00 000 null
10 020 9 or 2 40 or 32 100 or 062 @ or 2

13 023 + or = 2B or 3D 053 or 075 + or =

15 025 undefined 00 000 null
16 026 undefined 00 000 null
19 031 I or 1 49 or 69 111 or 151 I or i

1A 032 K or k 4B or 6B 113 or 153 K or k
1C 034 UCS or UPPERCASE 0E 016 shift out§
IF 037 LCS or LOWERCASE OF 017 shift in§

20 040 + or 1 7C or 31 174 or 061 ! or 1

23 043 G or g 47 or 67 107 or 147 G or g
25 045 S or s 53 or 73 123 or 163 S or s

26 046 H or h 48 or 68 110 or 150 H or h
29 051 R or r 52 or 72 122 or 162 R or r

2A 052 D or d 44 or 64 104 or 144 D or d

2C 054 RO or READER STOP 14 024 device control 4

2F 057 HT or TAB 09 on horizontal tabulate
31 061 V or v 56 or 76 126 or 166 V or v
32 062 U or u 55 or 75 125 or 165 U or u
34 064 (or 9 28 or 39 050 or 071 (or 9
37 067 or - 5F or 2D 137 or 055 _ or -

38 070 * or 8 2A or 38 052 or 070 * or 8

3B 073 i 2C 054 >

3D 075 IL or IDLE or NULL 00 000 null
3E 076 PRE or PREFIX IB 033 escape
40 100 space 20 040 space
43 103 J or j 4A or 6A 112 or 152 J or j

45 105 or o 4F or 6F 117 or 157 or o

46 106 L or 1 4C or 6C 114 or 154 L or 1

49 111 " or
'

22 or 27 042 or 041 " or
'

4A 112 E or e 45 or 65 105 or 145 E or e
4C 114 PN or PUNCH ON 11 021 device control I

(tape on)
4F 117 PF or PUNCH OFF 13 023 device control 3

(tape off)
51 121 . 2E 056 •

52 122 N or n 4E or 6E 116 or 156 N or n
54 124 Z or z 5A or 7A 132 or 172 Z or z

57 127 undefined 00 000 null
58 130 if or 6 21 or 36 041 or 066 ! or 6

5B 133 Q or q 51 or 71 121 or 161 Q or q
5D 135 BS or BACKSPACE 08 010 backspace
5E 136 EOB 17 027 end transmission block'
61 141 M or m 4D or 6D 115 or 155 M or m
62 142 X or x 58 or 78 130 or 170 X or x
64 144) or 29 or 30 051 or 060) or
67 147 Y or y 79 or 59 131 or 171 Y or y
68 150 6 or 7 26 or 37 046 or 067 & or 7

6B 153 : or ; 3A or 3B 072 or 073 : or ;

6D 155 NL or CR or RETURN 0D 015 carriage return
6E 156 LF or LINE FEED OA 012 line feed
70 160 # or 3 23 or 33 043 or 063 # or 3
73 163 F of f 46 or 66 106 or 146 F or f

75 165 W or w 57 or 77 127 or 167 W or w

A-44 60499500 R

TABLE A-17. ASCII CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal Correspondence Code Network ASCII (Normalized Mode Use)

Hex.
Code*

Octal
Codet

Correspondence
Code GraphicTT Control Character

Hex.

Codettt
Octal
Codettt

ASCII
Graphic Control Character

76

79
7A
7C

7F
00
00
00
00
00

00
3D
3D
3D
3D
3D
3D

3D

3D

3D

3D

166

171

172
174

177

000
000
000
000
000
000

075
075

075
075
075
075

075
075

075

075

B or b
A or a
C or c

space"
space§§
space"
space§§
space§§

space"

EOT
DEL

IL or IDLE or NULl||
IL or IDLE or NULL§§

IL or IDLE or NULLjjf

IL or IDLE or NULL§§

IL or IDLE or NULL||
IL or IDLE or NULLSS

IL or IDLE or NULL§f
IL or IDLE or NULL-"
IL or IDLE or NULL**

IL or IDLE or NULL§§

42 or 62

41 or 61
43 or 63
04
18

27
5C

5E

60
7B

7D or 7E

01

02

03

05
07

0B or 0C

10

12

14 thru 16

18 thru IF

102 or 142

101 or 141

103 or 143

004
030
047
134

136
140
173

175 or 176

001
002

003
005
007
013 or 014

020
022
024 thru
026

030 thru
037

B or b

A or a
C or c

\

\

{

} or
~

end of transmission'
cancel

start of header
start of text
end of text
enquire
bell
vertical tabulate
or form feed
data link escape
device control 2

device control 4,
negative acknowledge,
or synchronize
cancel, end of media,
substitute,
file separator,
group separator,
record separator,
or unit separator

TShown with odd parity; odd parity is the default for this terminal class.

tt'Each input line is assumed to begin in lowercase. Input characters are translated to lowercase ASCII
characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect until another
case shift code is received, the page width is reached, or the line is transmitted to the host computer.
During output, case Is preserved by insertion of case shift codes where needed.

tttShown with zero parity (eighth or uppermost bit is always zero).

§Not transmitted to the host computer after translation during input.

"Output translation only.

60499500 R A-45 •

TABLE A-18. APL CHARACTER CODE TRANSLATIONS, CORRESPONDENCE
CODE CONSOLES IN TERMINAL CLASS 4 (2741)

Terminal Correspondence Code Network ASCII (Normalized Mode Use)

Hex
Code*

Octal
Codet

Correspondence
Code APL
Graphlctt

Control Character
Hex

Codettt
Octal
Codettt

ASCII-APL
Graphic

Control Character

01 001 -» or «- 71 or 70 161 or 160 -» or «-

02 002 - or T 74 or 54 164 or 124 ~ or T
04 004 < or 4 40 or 34 100 or 064 < or 4

07 007 \ or / 5C or 2F 134 or 057 \ or /

08 010 - or 5 3D or 35 075 or 065 = or 5
OB 013 * or P 2A or 50 052 or 120 * or P
OD 015 undefined 00 000 null
OE 016 undefined 00 000 null
10 020

_
or 2 5E or 32 136 or 062

—
or 2

13 023 + or X 25 or 66 045 or 146 + or X
15 025 undefined 00 000 null
16 026 undefined 00 000 null
19 031 t or I 69 or 49 151 or 111 \ or I
1A 032 ' or K 27 or 4B 153 or 113 ' or K
1C 034 DCS or UPPERCASE 0E 016 shift out§
IF 037 LCS or LOWERCASE OF 017 shift in§
20 040 " or 1 23 or 31 042 or 061 " or 1

23 043 V or G 67 or 47 147 or 107 V or G
25 045 r or S 73 or 53 163 or 123 r or S
26 046 A or H 68 or 48 150 or HO A or H
29 051 P or R 72 or 52 162 or 122 P or R
2A 052 L or D 64 or 44 144 or 104 l or D
2C 054 undefined 00 000 null
2F 057 HT or TAB 09 011 horizontal tabulate
31 061 U or V 76 or 56 166 or 126 U or V
32 062 1 or U 75 or 55 165 or 125 * or U
34 064 v or 9 21 or 39 041 or 071 s/ or 9

37 067 - or + 2D or 2B 055 or 053 - or +
38 070 * or 8 22 or 38 042 or 070 * or 8
3B 073 ; or , 3B or 2C 073 or 054 ; or *

3D 075 IL or IDLE or NULL 00 000 null
3E 076 PRE or PREFIX IB 033 escape
40 100 space 20 040 space
43 103 ° or J 6A or 4A 156 or 112 ° or J
45 105 o or 6F or 4F 157 or 117 o or
46 106 or L 6C or 4C 154 or 114 or L
49 HI) or] 29 or 5D 051 or 035) or]

4A 112 € or E 65 or 45 145 or 105 € or E
4C 114 undefined 00 000 null
4F 117 undefined 13 023 null
51 121 : or 3A or 2E 072 or 056 : or ,

52 122 T or N 6E or 4E 156 or 116 t or N
54 124 .= or Z 7A or 5A 172 or 132 <= or Z

57 127 undefined 00 000 null
58 130 > or 6 7C or 36 174 or 066 > or 6

5B 133 ? or Q 3F or 51 077 or 121 ? or Q
5D 135 BS or BACKSPACE 08 010 backspace
5E 136 E0B 17 027 end transmission

block§
61 141

I or M 6D or 40 155 or 115 1 or M
62 142 => or X 78 or 58 170 or 130 o or X
64 144 y\ or 26 or 30 045 or 060 /s or
67 147 t or Y 79 or 59 171 or 131 t or Y
68 150 > or 7 3E or 37 076 or 067 > or 7

6B 153 (or [28 or 5B 050 or 133 (or [

6D 155 NL or CR or RETURN 0D 015 carriage return
6E 156 LF or LINE FEED 0A 012 line feed
70 160 < or 3 3C or 33 074 or 063 < or 3
73 163 or F 5F or 46 137 or 106 _ or F
75 165 co or W 77 or 57 167 or 127 go or W

A-46 60499500 R

Hex
Code!

76

79

7A
7C

7F
00
00

00
00
3D

3D
3D

3D
3D
3D

3D
3D
3D

3D

TABLE A-18. APL CHARACTER CODE TRANSLATIONS, CORRESPONDENCE

CODE CONSOLES IN TERMINAL CLASS 4 (2741) (Contd)

Terminal Correspondence Code

Octal
Codet

166

171

172
174

177

000
000
000
000
075
075
075
075
075
075

075
075
075

075

Correspondence
Code APL
Graphic'!

1 or B

oc or A
(1 or C

space
space
space
space§§

Control Character

EOT

DEL

Network ASCII (Normalized Mode Use)

Hex
Codettt

Octal
Codettt

IDLE or NULL88

IDLE or NULl||
IDLE or NULL||

..... ... IDLE or NULL'S

IL or IDLE or NULL§|

IL or
IL or
IL or
IL or

IL or IDLE or NULL§S

IL or IDLE or NULL'
IL or IDLE or NULLS

IL or IDLE or NULL§

IL or IDLE or NULL*

62 or 42

61 or 41

63 or 43

04 or 14

18

27
60

7B
7D or 7E
01

02
03
05
07
0B or 0C

10

12

14 thru 16

18 thru IF

102

101

142 or
141 or
143 or 103

004

030
047

140

173
175 or 176

001

002
003
005
007
013 or 014

020
022
024 thru
026

030 thru
037

ASCII-APL
Graphic

or B
or A
or C

O

{

} or !

Control Character

end of transmission8

cancel

start of header
start of text
end of text
enquire
bell
vertical tabulate
or form feed
data link escape
device control 2

device control 4,

negative acknowledge,
or synchronize
cancel, end of media,
substitute,
file separator,

group separator

,

record separator,
or unit separator

tshown with odd parity; odd parity is the default for this terminal class. (Unless PA=N or PA=I, the

application program receives the same code as in normalized mode.)

ttEach input line is assumed to begin in lowercase. Input characters are translated to lowercase ASCII

characters unless prefixed by the UCS code. Once a case shift occurs, it remains in effect until another

case shift code is received, the page width is reached, or the line is transmitted to the host computer.

During output, case is preserved by insertion of case shift codes where needed.

tttshown with zero parity (eighth or uppermost bit is always zero).

§Not transmitted to the host computer after translation during input.

'"Output translation only.

60499500 S A-47

TABLE A-19. FULL ASCII NORMALIZED MODE APL CHARACTER SET

-128-Character Set

• 96-Character Subset •

64-Character Subset

Bits

b4 b3 b2 b lMM
1

10

11

10

10 1

110
111

1

1

ROW COLUMN

1 1

1

1 1

1 1

1 1 1

NUL DLE SP

000 020 040

SOH DC1 •• (

001 021 041

STX DC2 /
002 022 042

ETX DC3 :

003 023 043

EOT DC4 $

004 024 044

ENQ NAK 5-

005 025 045

ACK SYN /\

006 026 046

BEL ETB '

007 027 047

BS CAN (

010 030 050

HT EM)

Oil 031 051

LF SUB *

012 032 052

VT ESC +
013 033 053

FF FS 1

104 034 054

CR GS _

015 035 055

SO RS
016 036 056

SI US /

017 037 057

060

1

061

2

062

3

063

4

064

5

065

6

066

7

067

8

070

9

071

072

073

<

074

075

>

076

9

077

<

100

A
101

B

102

C

103

D
104

E

105

F

106

G
107

H

110

I

111

J

112

K
113

L

114

M
115

N
116

117

P

120

Q
121

R
122

S

123

T

124

U

125

V

126

W
127

X

130

Y

131

Z

132

133

\

134

135

136

137

140

ex

141

1

142

n

143

L

144

e

145

X

146

V
147

A
150

X
151

152

153

D
154

155

T
156

o

157

160

161

P

162

r

163

16^

I

165

U

166

167

170

t

171

c:

172

{

173

2
174

}

175

\—

176

DELt
177

'The graphic 95-character subset does not Include DEL; refer to Terminal Transmission Modes in the text.

LEGEND :

Numbers under characters are the octal values for the 7-bit character codes used within the network.

A-48 60499500 R

DIAGNOSTIC MESSAGES B

This appendix lists the following categories of

messages concerning network software:

Application program execution errors

Application program macro assembly errors

Postprocessor errors and informative messages

EXECUTION ERROR MESSAGES

When the Network Access Method's execution time

code detects a fatal error, a diagnostic message is

written in the application program's dayfile. The

diagnostic messages issued by NIP are listed alpha-

betically in table B-l.

All fatal errors detected by NIP cause the applica-

tion program to abort without the ability to

reprieve itself from the abort. All fatal errors

detected by AIP cause the application program to

abort and permit the application to reprieve itself

from the abort, but no further AIP calls are allowed

after the abort occurs.

The form of diagnostic message used by AIP and/or

QTRM is partially determined by the library used to

provide the routines for the execution run. If the

routines are loaded from library NETIO, the only

fatal diagnostic issued is:

NETWORK APPLICATION ABORTED, RC=rc.

where re is a reason code from 01 through 99, with

the significance indicated in table B-2. If the

AIP and QTRM routines are loaded from library

NETIOD, the same fatal diagnostic message is issued,

but a supplementary message explaining the reason

code is issued, as shown in the Message column of

table B-2. The supplementary message begins with

the name of the routine that detected the error.

The additional informative message

:

NAM VER. x.y - level

is always issued at AIP NETON call processing

completion. The numbers x, y, and level, respec-

tively, indicate the version number, variant, and

PSR level of the AIP code used.

ASSEMBLY ERROR MESSAGES

When an application program uses the COMPASS macro

version of the AIP calls, the assembly listing can

contain the fatal error messages listed in table

B-3. These macros are described in section 4.

POSTPROCESSOR MESSAGES

The debug log file postprocessor (DLFP) is used to

process debug log files. During this processing it

can issue the messages shown in table B-4. The

debug log file postprocessor is described in sec-

tion 6.

TABLE B-l. APPLICATION PROGRAM DAYFILE NIP DIAGNOSTIC MESSAGES

Issued
Message Significance Action By

ADDRESS OUT OF RANGE The application program specified Change the address and rerun NIP

an address of 0, 1, or a word outside the job. If an incorrect

of its field length on a NETPUT or address cannot be found , con-

NETGET type AIP call, or an AIP bug tact a system analyst; a bug

exists. exists in AIP.

APP WORK LIST ADDR=0 AIP has indicated that NIP should Follow site-defined procedure NIP

write its reply worklist at address 0. to report and correct product

NIP cannot use this address . Either or system problems

.

an AIP bug exists, or the application
program has bypassed or destroyed its

copy of AIP.

APPLICATION IS NOT The application attempted a call to Remove the call to NETXFR. AIP

ALLOWED TO DO XFR the AIP routine NETXFR but is not Only PTF and QTF are allowed

validated for such a call. to call NETXFR.

60499500 S
B-l

TABLE B-l. APPLICATION PROGRAM DAYFILE NIP DIAGNOSTIC MESSAGES (Contd)

Message Significance Action
Issued
By

BAD AIP OPCODE

BAD WORD/ENTRY COUNT

EXTRA WORKLIST

ILLOGICAL WORKLIST

INVALID APPLICATION
NAME ON NETON

INVALID MINACN/MAXACN
ON NETON

NONEXISTENT
APPLICATION ID

NOT YET NETTED ON

SECURITY VIOLATION

AIP has passed an invalid operation
code in a worklist sent to NIP.
Either an AIP bug exists, or the
application program has bypassed
or destroyed its copy of AIP.

The number of words or entries in a

worklist passed from AIP to NIP
exceeded the maximum number permitted.
Either an AIP bug exists, or the
application program has bypassed or

destroyed its copy of AIP.

AIP passed a new worklist to NIP while
NIP was still processing a previous
worklist. Either an AIP bug exists,
or the application program has by-
passed or destroyed its copy of AIP.

AIP has passed a worklist to NIP that
contains more than one NETWAIT or
NETGET request. Either an AIP bug
exists, or the application program
has bypassed or destroyed its copy
of AIP.

The program attempted to access the
network with an aname parameter that
does not appear in the system
validation file and/or COMTNAP.

One or both of the indicated
parameters was out of the range
permitted for the installation.

NIP has no table entry corresponding
to the process number AIP has passed
to it to identify the application
program. Either an AIP or NAM bug
exists, or the application program
has bypassed or destroyed its copy
of AIP.

The application program attempted to
use the network's resources before
issuing a NETON call. If this message
does not occur with the corresponding
AIP message, either a bug exists in
AIP, or the application program has
bypassed or destroyed its copy of AIP.

The application program has attempted
to call NETON as a supervisory or
validation program (CS, NS, or NVF).

Follow site-defined procedure
to report and correct product
or system problems.

Follow site-defined procedure
to report and correct product
or system problems.

Follow site-defined procedure
to report and correct product
or system problems.

Follow site-defined procedure
to report and correct product
or system problems.

Correct the aname parameter
and rerun the job. Check that
the system validation file
and/or COMTNAP has been updated
to include the application's
name.

Change the parameters and
rerun the job.

Follow site-defined procedure
to report and correct product
or system problems.

Change the program and rerun
the job.

NIP

NIP

Change the program's origin
type permission and rerun the
job.

NIP

NIP

NIP

NIP

NIP

NIP

NIP

B-2 60499500 R

TABLE B-2. APPLICATION PROGRAM DAYFILE AIP AND QTRM DIAGNOSTIC MESSAGES

Reason
Code

01

thru
29

30

31

32

33

34

35

thru
39

40

41

42

43

44

Message

NETON: DUPLICATE NETON
REQUEST

NPSGET: REQUEST INVALID
BEFORE NETON

NP$PUT: REQUEST INVALID
BEFORE NETON

NETWAIT: REQUEST INVALID
BEFORE NETON

NETDBG: REQUEST INVALID
BEFORE NETON

NETON: PREVIOUS REQUEST
INCOMPLETE

NP$GET: PREVIOUS REQUEST
INCOMPLETE

NP$PUT: PREVIOUS REQUEST
INCOMPLETE

Significance

NETWAIT: PREVIOUS REQUEST
INCOMPLETE

Reserved by CDC.

The application program
has called NETON twice.

The application program
issued a GET-type call
before it issued a NETON
call, or after it issued a
NETOFF call.

The application program
issued a PUT-type call
before it issued a NETON
call, or after it issued a
NETOFF call.

The application program

issued the indicated call
before it issued a NETON
call, or after it issued a
NETOFF call.

The application program
issued the indicated call
before it issued a NETON
call, or after it issued a
NETOFF call.

Reserved by CDC.

An AIP call other than to
NETOFF or NETCHEK cannot
be made while the program
is in parallel processing
mode and a previous AIP
call has not been com-
pleted .

Reserved by CDC.

An AIP call other than to

NETOFF or NETCHEK cannot
be made while the program
is in parallel processing
mode and a previous AIP
call has not been com-
pleted .

An AIP call other than to

NETOFF or NETCHEK cannot
be made while the program
is in parallel processing
mode and a previous AIP

call has not been com-
pleted.

An AIP call other than to

NETOFF or NETCHEK cannot
be made while the program
is in parallel processing
mode and a previous AIP
call has not been com-
pleted .

Action

Change the program and rerun

the job.

Change the program and rerun

the job.

Change the program and rerun

the job.

Change the program and rerun

the job.

Change the program and rerun

the job.

Relocate the improperly
placed NETON call and rerun
the job.

Relocate the improperly
placed GET-type call and
rerun the job.

Relocate the improperly
placed PUT-type call and
rerun the job.

Relocate the improperly
placed NETWAIT call and
rerun the job.

Issued
By

AIP

AIP

AIP

AIP

AIP

AIP

AIP

AIP

AIP

60499500 S 3 |

TABLE B-2. APPLICATION PROGRAM DAYFILE AIP AND QTRM DIAGNOSTIC MESSAGES (Contd)

Reason
Code

Message Significance Action
Issued

By

45 NETOFF: NETOFF DURING
FILE TRANSFER

Application NETOFF while
there is a file transfer
still in progress.

Relocate the improperly
placed OFF-type call and

rerun the job.

AIP

46

thru
48

Reserved by CDC.

49 NP$L0C: NO ENTRY WITH
MATCHING ACN

No entry in file transfer-
ring table matching this
ACN.

Rerun the job. AIP

50 NP$0N: INVALID PROCESS
NUMBER

A bug exists in the oper-
ating system or NAM. The
process number assigned to

the application program
during processing of its
NETON call was out of
range

.

Follow site-defined
procedure to report and

correct product or system
problems

.

AIP

51 NP$XFER: NWL HAS
OVERFLOWED

The debug option code in
AIP detected an error con-
dition not caused by an
application program AIP
call.

Follow site-defined
procedure to report and
correct product or system
problems.

AIP

52

thru
66

Reserved by CDC.

67 NP$XFER: NIP NOT
AVAILABLE AT A SCP

The application program
reprieved itself after
being aborted, but NIP has
also aborted. The only
AIP call that can be
issued after NIP aborts is
a NETOFF.

Change the application
program reprieve procedure
and rerun the job.

AIP

68 FETCH ILLEGAL FIELD
MNEMONIC

Either the field or value
parameter in the indicated
call was not found.

Correct the call and rerun
the job.

AIP

69 STORE ILLEGAL FIELD
MNEMONIC

Either the field or value
parameter in the indicated
call was not found.

Correct the call and rerun
the job.

AIP

70 QTENDT: REQUEST INVALID
BEFORE QTOPEN

A QTENDT call is illegal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

71 QTGET: REQUEST INVALID
BEFORE QTOPEN

A QTGET call is illegal
before a QTOPEN call or

after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

72 QTPUT: REQUEST INVALID
BEFORE QTOPEN

A QTPUT call is illegal
before a QTOPEN call or

after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

73 QTLINK: REQUEST INVALID
BEFORE QTOPEN

A QTLINK call is illegal
before a QTOPEN call or
after a QTCLOSE call.

Correct the statement
sequence and rerun the job.

QTRM

B-4 60499500 S

TABLE B-2. APPLICATION PROGRAM DAYFILE AIP AND QTRM DIAGNOSTIC MESSAGES (Contd)

Reason
Code Message Significance Action

Issued
By

74 QTTIP: REQUEST INVALID A QTTIP call is illegal Correct the statement QTRM
BEFORE QTOPEN before a QTOPEN call or

after a QTCLOSE call.

sequence and rerun the job.

75 Reserved by CDC.
thru
79

80 QTOPEN: DUPLICATE QTOPEN The application program
attempted to perform
QTOPEN a second time.

Remove the extra QTOPEN
statement and rerun the
job.

QTRM

81 QTOPEN: NIT HUM-CONNS The num-conns field in Correct the table and rerun QTRM
FIELD IS ZERO the network information

table was zero when
QTOPEN was called.

the job.

82 QTOPEN: NETON REJECTED The application program
was not allowed to access
the network. Either
another application with
the same name has accessed
the network or the host
operator has disabled the
application from accessing
the network.

Rerun the job after
contacting the host
operator.

QTRM

83 QTOPEN: NETWORK NOT
AVAILABLE

The network Is not running
or it temporarily does not
have enough resources to
allow this application to
access the network.

Rerun the job later. QTRM

84 Reserved by CDC.
thru
94

95 QTLINK: NO A-TO-A The application program
requested connection to
another application pro-
gram when the A-to-A
field is not set.

Change the program to set
the A-to-A field before
the call to QTOPEN and
rerun the job.

96 Reserved by CDC.
thru
98

99 QTGET: NETWORK LOGICAL NAM has sent a logical Correct the parameter fields QTRM
ERROR, TYPE n error supervisory message

to the application pro-
gram; n is the reason code
from the logical error
supervisory message. The
logical error Is due to
a QTPUT call with bad
parameters stored in the
network Information table.

before issuing the QUPUT
call.

60499500 R B-5

TABLE B-3. AIP MACRO ASSEMBLY LISTING DIAGNOSTIC MESSAGES

Message Significance Action
Issued

By

ERR FIRST PARAMETER MISSING

ERR MUST BE LIST-

ERR NSUP ADDRESS MISSING

ERR STATUS ADDRESS MISSING

ERR MINACN ADDRESS MISSING

ERR MAXACN ADDRESS MISSING

ERR HEADER AREA ADDRESS
MISSING

ERR TEXT AREA ADDRESS
MISSING

ERR TEXT LIMIT IS MISSING

ERR SECOND PARAMETER
MISSING

ERR THIRD PARAMETER MISSING

At least one parameter is
required in the AIP call that

caused the error.

A parameter is required after
LIST= in the second calling
format by the AIP call that
caused the error.

Address of nsup word is not
provided in the first or third
calling format by the NETON
AIP call that caused the error.

Address of status word is not
provided in the first or third
calling format by the NETON
AIP call that caused the error.

Address of MINACN word is not
provided in the first or third
calling format by the NETON
AIP call that caused the error.

Address of MAXACN word is not
provided in the first or third
calling format by the NETON
AIP call that caused the error.

Address of application block
header is not provided in first
or third calling format by the
NETGET, NETGETF, NETGETL, or
NETGTFL AIP call that caused
the error.

Address of text area is not
provided in the first or third
calling format by the NETGET,
NETGETF, NETGETL, or NETGTFL
AIP call that caused the error.

Address of text limit of block
acceptable is not provided in

the first or third calling for-
mat by the NETGET, NETGETF,
NETGETL, or NETGTFL AIP call
that caused the error.

Second parameter is not pro-
vided in the first or third
calling format by the NETPUT,
NETREL, NETSETF, NETSTC,
NETWAIT, NETPUTF, or NETDBG AIP
call that caused the error.

Third parameter is not pro-
vided in the first or third
calling format by the NETPUTF
or NETDBG AIP call that caused
the error.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

Correct the call and reassemble
the job.

AIP

AIP

AIP

AIP

AIP

AIP

AIP

AIP

AIP

AIP

AIP

B-6 60499500 R

TABLE B-3. AIP MACRO ASSEMBLY LISTING DIAGNOSTIC MESSAGES (Contd)

Message Significance Action Issued
By

ERR PARAMETER MISSING The parameter is not provided
in the NETSETP AIP call that
caused the error.

Correct the call and
the job.

reassemble AIP

ERR field ERROR IN 1ST
PARAMETER

The first parameter provided
in the NFETCH or NSTORE call
that caused the error is not
valid. The field parameter
indicates the field in which
the error occurs.

Correct the call and
the job.

reassemble AIP

ERR field ERROR IN FIELD
MNEMONICS

The second parameter provided
in the NFETCH or NSTORE call
that caused the error is not a
valid symbolic field name. The
field parameter indicates the
field in which the error
occurs

.

Correct the call and
the job.

reassemble AIP

ERR field ILLEGAL REGISTER
NAME

The third parameter provided
in the NFETCH call that caused
the error is not a valid regis-
ter. The field parameter
indicates the field in which
the error occurs.

Correct the call and
the job.

reassemble AIP

ERR field ERROR IN BRD
PARAMETER

The third parameter provided
in the NSTORE call that caused
the error is not a valid regis-
ter. The field parameter
indicates the field in which
the error occurs.

Correct the call and
the job.

reassemble AIP

TABLE B-4. DLFP DAYFILE, ERROR, AND INFORMATIVE MESSAGES

Message Significance Action
Issued
By

BAD DEBUG LOG FILE DLFP did not process the debug log
file because the content of the
file was bad.

Correct and rerun. DLFP

BAD DIRECTIVE TABLE ENTRY DLFP detected an error in its
internal tables.

Follow site-defined pro-
cedure to report and correct
product or system problems.

DLFP

DLFP COMPLETE DLFP completed processing the
debug log file, if any.

None

.

DLFP

DUPLICATE FILE NAME The same file name was used on
more than one parameter on the
DLFP command.

Correct and rerun. DLFP

EMPTY DEBUG LOG FILE The debug log file was empty. None. DLFP

ERROR IN B DIRECTIVE B directive is not followed by
keyword operator.

Correct and rerun. DLFP

60499500 R B-7

TABLE B-4. DLFP DATFILE, ERROR, AND INFORMATIVE MESSAGES (Contd)

Message Significance Action
Issued

By

ERROR IN BD= DIRECTIVE

ERROR IN BT= DIRECTIVE

ERROR IN C DIRECTIVE

ERROR IN CN= DIRECTIVE

ERROR IN DN- DIRECTIVE

ERROR IN E DIRECTIVE

ERROR IN ED= DIRECTIVE

ERROR IN ET= DIRECTIVE

ERROR IN F DIRECTIVE

ERROR IN LE- DIRECTIVE

ERROR IN N DIRECTIVE

ERROR IN NM= DIRECTIVE

ERROR IN F DIRECTIVE

ERROR IN PF« DIRECTIVE

ERROR IN PS= DIRECTIVE

ERROR IN R DIRECTIVE

ERROR IN SM= DIRECTIVE

ERROR IN SN= DIRECTIVE

ERROR IN T DIRECTIVE

ERROR IN U DIRECTIVE

ERROR IN X DIRECTIVE

ILLEGAL CHARACTER

ILLEGAL FILE NAME

Date is invalid or missing.

Time is invalid or missing.

C directive is not followed by
keyword separator.

Connection number is invalid or

missing.

DN directive used incorrectly.

E directive is not followed by
keyword separator.

Date is invalid or missing.

Time is invalid or missing.

F directive is not followed by
keyword separator.

Length is an invalid value or
missing.

N directive is not followed by a
keyword separator.

Number is invalid or missing.

F directive is not followed by
keyword separator.

Hexadecimal number is invalid, not
two digits, or missing. '

Hexadecimal number is invalid, not
four digits, or missing.

R directive is not followed by
keyword separator.

Number is invalid or missing.

SN directive used incorrectly.

T directive is not followed by
keyword separator.

U directive is not followed by
keyword separator.

X directive is not followed by
keyword separator.

The directive record contains a
character that is not a letter,
a digit, an equal sign, a
comma, or a blank.

The file name contains characters
other than letters and digits or

it begins with a number.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

Correct and rerun.

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

DLFP

| B-8 60499500 R

TABLE B-4. DLFP DAYFILE, ERROR, AND INFORMATIVE MESSAGES (Contd)

Message Significance Action Issued
By

ILLEGAL PARAMETER DLFP does not recognize a
parameter in the command.

Correct and rerun. DLFP

LOG FILE NOT CLOSED Debug log file was not closed
correctly. Either NETOFF or
NETREL was not called before
the application terminated.

Correct the application pro-
gram for future executions,
if possible.

DLFP

MULTIPLE COMMAS BETWEEN
DIRECTIVES

Two or more commas were used with
no directive between them.

Correct and rerun. DLFP

NO MESSAGES FOUND No messages were found with the
specified keywords.

None. DLFP

OVER 10 VALID CHARS BETWEEN
KEYWD SEP

The string of valid characters
between the keyword separators
was greater than 10 characters.
A valid character is a letter,
a digit, or an equal sign.

Correct and rerun. DLFP

PARAMETER FORMAT ERROR A parameter on the DLFP command
is not formatted correctly.

Correct and rerun. DLFP

PARAMETER SPECIFIED TWICE A parameter on the DLFP command
appears more than once.

Correct and rerun. DLFP

UNRECOGNIZABLE KEYWORD A nonexistent keyword was used, or
the first keyword did not begin
in column one.

Correct and rerun. DLFP

60499500 R B-9

GLOSSARY

This appendix contains terms and mnemonics unique
to the description of the software presented in
this manual. It also contains terms whose inter-
pretation within this manual is intended to be more
constrained or different from that commonly made.
Some terms used in other manuals for the network
software are included for the reader's convenience
when reconciling terminology.

Acknowledgment, Block -

A message returned to the sender confirming the
delivery of one block; referred to as BACK in
CCP documentation.

Address -

A location of data (as in the main or micro NPU
memory) or of a device (as a peripheral device
or terminal).

APL -

A scientific programming language characterized
by powerful operators and special graphic sym-
bols.

Application Block Header (ABH) -
A single 60-bit word description accompanying
every block passing between an application pro-
gram and NAM.

Application Block Limit (ABL) -

The number of unacknowledged blocks a logical
connection is allowed to have outstanding
(queued by the network) at any one time.

Application Block Number (ABN) -

A field in the application block header. An
application-assigned number used to identify a
particular network data block.

Application Block Type (ABT) -

A field in the application block header defining
the accompanying block as either data or super-
visory, null or not null, and indicating which
block is the last block of a message.

Application Character Type (ACT) -
A field in the application block header defining
the byte size and packing of text characters.

Application Connection Number (ACN) -

A number assigned by NAM to identify a particu-
lar logical connection within an application
program.

Application Interface Program (AIP) -

A group of routines that reside in the applica-
tion program's field length. These routines
buffer communication between the application
program and the network, using the system con-
trol point feature of NOS.

Application List Number (ALN) -

An application-program-assigned number used to
identify a particular group of logical connec-
tions belonging to the application program.

Application Name (ANAME) -

Up to seven 6-bit letters or digits (the first
must be a letter) used to identify an applica-
tion program. It is used by another application
program, by a terminal operator when connection
to the application is requested, and by the host
operator to give commands.

Application Program -

A program resident in a host computer that pro-
vides an information storage, retrieval, and/or
processing service via the data communication
network and the Network Access Method. Appli-
cation programs always use the system control
point feature of NOS to communicate with the
Network Access Method. In the context of net-
work software, an application program is not an
interactive job, but rather a terminal servicing
facility. A terminal servicing facility pro-
vides terminal users with a specific processing
capability such as remote job entry from batch
terminals, transaction processing, entry and
execution of interactive jobs, and so forth.
For example, the standard CDC interactive
facility IAF makes terminal input and output
appear the same to an executing program as file
input and output; IAF is a network application
program, but the executing program using IAF is
an interactive job.

Archetype Terminal -

The specific terminal equipment possessing all
of the attributes used as defaults for the
definition of one terminal class. Each terminal
class has a corresponding archetype terminal.

Asynchronous -

A transmission in which each information char-
acter is individually synchronized by the use
of start and stop bits. The gap between each
character is not necessarily of fixed length.

Asynchronous Protocol -

The protocol used by asynchronous,
teletypewriter-like devices. For CCP, the I
protocol is actually the set of protocols for
eight types of real terminals. The NPU/
terminal interface is handled by the ASTNC TIP.

Automatic Input -

An output mode that prefixes up to 20 characters
of the output message to the input reply.

Automatic Login -

The process whereby one or more of the Network
Validation Facility login dialog parameters is
supplied to NVF from the local configuration
file. Parameters supplied through automatic
login configuration of a terminal suppress
prompting for the corresponding dialog entries
and override any entries made from the terminal.

60499500 R C-l

Automatic Recognition -

The process whereby the Terminal Interface

Program Identifies characteristics of a terminal

when the terminal's communication line becomes

active. The Terminal Interface Program deter-

mines sub-TIP type and terminal class (and, for

mode 4 terminals, the cluster and terminal

addresses) by various methods for lines config-

ured for automatic recognition. The Communi-

cations Supervisor then matches these parameters
against the descriptions of specific terminals

in the network configuration file; the terminal

with the closest match to the empirically
determined parameters is automatically recog-

nized as the terminal on the communication line.

Base System Software -

The relatively invariant set of programs in CCP

that supplies the monitor, timing, interrupt
handling, and multiplexing functions for the

HPU. Base software also includes common areas,

diagnostics, and debugging utilities.

Batch Device -

A device that is capable of conducting input

only or output only operations. Card readers,

line printers, and plotters are examples of

batch devices. Batch devices are sometimes
referred to as passive devices.

Binary Synchronous Communications (BSC) -

A communications protocol supported by the BSC

TIP. This protocol connects IBM 2780 or 3780

terminals to the NPU using half-duplex synchro-
nous transmissions in a point-to-point mode.

The terminals have batch devices which use

EBCDIC code. Transparent data exchanges are

permitted. The terminals are configured to

have a virtual console (interactive device).

This is composed of a card reader for input and
a printer for output.

Block -

In the context of network communications, a

portion or all of a message. A message is

divided into blocks of one or more words (2

bytes/word in the NPU) to facilitate buffering,

transmission, error detection and correction of

variable length data streams. Differing block
protocols apply to the host/NPU and the NPU/

terminal interfaces

.

Block Acknowledgment -

See Acknowledgment, Block.

Block Header -

See Application Block Header.

Block Limit -

The number of message blocks that can be

awaiting delivery at any one time in either the
host-to-NPU direction or the NPU-to-host direc-
tion for a single device.

Block Type -

See Application Block Type.

Buffering -

The process of collecting data together in buf-
fers. Ordinarily, no action on the data is

taken until the buffer is filled. Filled buf-
fers include the case where data is terminated

before the end of the buffer and the remaining

space is filled with irrelevant codes. |

Byte -

A group of contiguous bits. Unless prefixed
(for example, a 6-bit byte), the term implies

8-bit groups. When used for encoding character

data, a byte represents a single character.

Cassette -

The magnetic tape device in an NPU used for
bootstrap loading of off-line diagnostics and

(in remote NPUs) the bootstrap load/dump oper-

ation.

CE Error Message -

A message containing information concerning
hardware and/or software malfunctions.

Character -

A coded byte of data, such as a 6-bit display

code or 7-bit ASCII code. Terminals use a wide |
range of codes. Network products are respon-
sible for translating between terminal codes

and host codes. Unless otherwise specified,

references to characters in this manual are to
ASCII 7-bit byte characters.

Character Type -

See Application Character Type.

Cluster -

Mode 4 devices grouped by a common

address. Synonymous with terminal.
cluster

Cluster Address -

The hardware address of a cluster. This term

is used in several ways within mode 4 communi-
cations documentation, as shown in table C-l.

TABLE C-l. MODE 4 NOMENCLATURE EQUIVALENCE

Break -

A method employed by a terminal operator
interrupt output or input in progress.

to

Networks
Nomenclature

Mode 4A
Nomenclature

Mode 4C
Nomenclature

Network processing
unit

Data source Control
station

Cluster address Site address Station
address

Cluster controller Equipment
controller

Station

Terminal address Station
address

Device
address

Terminal Equipment
controller

Station

Device Equipment Device

C-2 60499500 R

Communication Element -

Any entity that constitutes a point of input
to, or output from, the data communication net-
work. This includes terminal devices, communi-
cation lines, and application programs.

Communication Line -

A complete communication circuit between a
terminal and its network processing unit.

Communication Network -

The portion of the total network comprising the
linked network processing units. The communi-
cation network excludes the host computer and

| terminals.

Communications Control Program (CCP) -

A portion of the network software that resides
in a 255x Series network processing unit. This
set of modules performs the tasks delegated to

I the NPU in the network. This software can
include such routines as the Terminal Interface
Program.

Communications Supervisor (CS) -

A portion of the network software, written as
an application program; the Communications
Supervisor configures and controls the status
of NPUs and all their communication lines and
terminals.

Configuration -

I See Network Configuration.

Connection -

See Logical Connection.

Connection Number (CN) -

A unique number assigned to each active device
on a logical link.

Constant Carrier -

A communication line with a transmission carrier
signal that remains on continuously; failure is
reported if the carrier signal received remains
off for a period of time that equals or exceeds
a failure verification period.

Contention -

The state that exists in a bidirectional trans-
mission line when both ends of the line try to
use the line for transmission at the same time.
All protocols contain logic to resolve the
contention situation.

Control Blocks -

(1) The types of blocks used to transmit con-
trol (as opposed to data) information; (2)
Blocks assigned for special configuration/
status purposes in the NPU. The major blocks
are line control blocks (LCB) , logical link
control blocks (LLCB), logical channel control
blocks (LCCB), terminal control blocks (TCB),
queue control blocks (QCB), buffer maintenance

I control blocks (BCB) , multiplexer line control
blocks (MLCB), text processing control blocks
(TPCB), and diagnostics control blocks (DCB).

Controlled Carrier -

A communication line with a transmission carrier

I
signal that is raised and lowered with each
block transmitted; failure is reported if the
carrier signal received does not fluctuate in a
similar fashion.

Controlled Terminal -

A terminal whose input can be started and
stopped by the network software. When a ter-
minal places data on a communication line only
in response to a poll, the maximum input rate
can be controlled by controlling the polling
rate. Mode 4 terminals are controlled.

Coupler -

A hardware module resident in a front-end net-
work processing unit. That coupler links the
network processing unit to a host computer.
Transmissions across the coupler use block
protocol.

Cross -

The software support system for CCP. These
programs, which are run on the host, support
source code programming in PASCAL, macroassem-
bler, and microassembler languages. The com-
piled or assembled output of the Cross programs
are in object code format on host computer
files. The object code files are processed by I
other Cross programs and host installation pro-
grams into a downline load file for an NPU.

Cyclic Redundancy Check (CRC) -

A check code transmitted with blocks/ frames of
data. It is used by several protocols. 1

Data -

Any portion of a message created by the source,
exclusive of any information used to accomplish
transmission of such a message.

I
Debugging - I

The process of altering a program to rid it of |
anomalies.

Dedicated Line -

A. communication line that is permanently con-
nected between a terminal and a network proc-
essing unit. Contrast with Switched Line.

DEFINE -

An NDL statement that provides the macro-like
capability of substituting an identifier in
coding for a more complex entity. When the
coding is processed, the identifier is inter-
preted as if it had been replaced by the complex
entity. Also, a NOS command that creates |
permanent files.

Destination -

the device or application program designated to
receive the message.

Destination Node (DN) -

The NPU node that directly interfaces to the
destination of a data block. For instance, the
DN of an upline block may be the host process
which passes the block to the application pro-
gram responsible for processing the block.

Device -

A separately addressable portion or all of a
terminal. This term is used in various ways
within mode 4 communications documentation, as
shown in table C-l.

Diagnostics -

Software programs or combinations of programs
or tables which aid the troubleshooter in iso-
lating problems.

60499500 R C-3

Direct Access File -

In the context of NOS permanent files, a direct

access file is a file that is accessed and

modified directly.

Downline -

The direction of output information flow, from
1 a host computer application program.

Dump -

In the context of CCP, the process of transfer-

ring the contents of the NPU main memory,
registers, and file 1 registers to the host.
The dump can be processed by the Network Dump
Analyzer in the host to produce a listing of

the dumped information.

Echo -

The process of displaying a keystroke on a con-

sole. Echoing can be done from the TIP, from a
modem, or from the terminal itself.

Echoplex -

The process of returning received characters on
a full-duplex line. Not all terminals on full-

duplex communication lines are capable of echo-
plex operation.

File -

A unit of batch data. Files are transferred

between application programs and terminals by
using PRUBs on the NPU's host side and trans-
mission blocks on the NPU's terminal side. A
file contains one or more records. Example: a

card reader job consists of a file containing
the card image records of all the cards in the

job deck.

Format Effectors (FE) -

Characters in an output data stream that deter-
mine the appearance of data at the console. A
format effector usually takes the form of a

I single character in the output line. For
printing devices, the character is translated
by the output side of the TIP into a combination
of carriage returns, line feeds, or spaces.
Similarly, FEs for displays can command new
lines, screen clearing, or cursor positioning.

Frame -

A frame is a block of data sent across a high-
speed link. It is composed of control bytes, a

ICRC sum, and (in some cases) data bytes in sub-
block sequence. A sub-block can be a network
data block or a part of a block. The frame is

the basic communications unit used in trunk
(NPU to NPU) communications and provides high-
data density in bit-serial format over data-
grade lines, as well as data assurance.

Frames are transmitted as a sequence of bytes

I

through the multiplex subsystem which uses a
hardware-controlled frame on the input and out-

put multiplex loops.

Free-Wheeling Terminal -

When a terminal can input at the discretion of

the terminal user and has an input rate that
cannot be controlled directly. Asynchronous

terminals are free-wheeling. Contrast with
Controlled Terminal.

Front-End NPU -

A network processing unit that directly inter- |
faces to one or more hosts. Synonymous with

local NPU.

Full Duplex (FDX) -

Two-way simultaneous transmission on a communi-
cation line.

Function Codes -

Codes used by the service module to designate
the type of function (command or status) being
transmitted. Two codes are defined: primary
function code (PFC) and secondary function code

(SFC). Function codes are also used between NAM

and the application programs in all supervisory
messages

.

Half Duplex (HDX) -

Two-way alternating transmission on a communi-
cation line. Normally a single set of data
lines carry input, output, and part of the con-
trol information. Contention for use is possi-
ble in HDX mode and must be resolved by the

protocol governing line transfers.

Halt Codes -

Codes generated by the NPU when it is stopped
by its software. These codes, which indicate

the cause of the stoppage, are contained in a

CCP dump.

HASP
A protocol based on the BSC protocol; it is used
by HASP workstations. A workstation has both |
interactive and batch devices. The standard

code of all HASP devices is EBCDIC; however,
transparent batch data exchanges with the host

are also permitted. The HASP TIP converts

interactive HASP data from EBCDIC transmission
blocks to ASCII IVT blocks; it converts batch
HASP data from EBCDIC transmission blocks to

display code PRU blocks. |

Header -

The portion or portions of a block holding
information about the block source, destination,
and type. During network movement, a block can
acquire several headers. For example, during
movement of a block from a terminal to the host

over an X.25 network, the block acquires the

following headers: one at the terminal (also a
trailer), one for the frame, one for the packet,

and another for the host application program. |
Headers are discarded by the appropriate stage
of processing, so that in this example, the host

sees only the application program block header. |
Conversely, headers are generated and discarded
as needed downline, so that the terminal sees

only the terminal header (and trailer).

Header Area (HA) -

An area, usually one 60-bit word, within the

application program containing the application
block header for a NETPUT or NETPUTF call, or

the area to receive the header for a NETGET,

NETGETL, NETGETF, or NETGTFL call.

High-Speed Synchronous Line -

A data transmission line operating at or above
19200 b/s. These lines are normally used for

local LIP/remote LIP transfers and for X.25 and
HASP network transfers.

C-4 60499500 R

Host —
The computer that controls the network and con-
tains the application programs that process

| network blocks.

Host Interface Package (HIP) -

| The CCP program that handles block transfers
across the host/local NPU interface. The HIP
transfers control blocks and data blocks (IVT

| blocks or PRU blocks).

Host Node -

The node ID number of the NPU coupler that
directly interfaces with a host computer.

Host Operator (HOP) -

The operator who resides at the system console,
initiates NAM, controls NPUs and network-
related host elements. The HOP may do all NPU
operator functions as well as those functions
unique to the HOP despite the existance of NPU
operators. There can be only one HOP. Con-
trast with NPU operator.

Initialization -

The process of loading an NPU and optionally
dumping the NPU contents. After downline load-
ing from the host, the NPU network-oriented
tables are configured by the host so that all
network processors have the same IDs for all
network terminals, lines, trunks, etc.

Input -

Information flowing upline from terminal to host
computer.

Input Parameter -

A parameter in an AIP call that provides input
to the AIP routine. An input parameter can be
a constant, an expression, or a symbolic address
for such values. Input parameters are not
altered by the completion of AIP processing.

Interactive Device -

Any device capable of conducting both input and
output, making it capable of dialog with the
Network Validation Facility. Also known as a
console device. An interactive device is serv-
iced by an application program using the inter-
active virtual terminal interface. Contrast
with Passive Device.

Interactive Virtual Terminal (IVT) -

A block protocol format for interactive con-
soles. CCP TIPs convert all upline interactive
blocks to this format (exception: no trans-
formations are made to transparent data except

|
to put the data into block format). By this
method, application programs in the host need
only to be able to process interactive data in
IVT format rather than in the multiplicity of
formats that real terminals use. Downline mes-
sages from the host to interactive devices are
converted from IVT to real terminal format.
IVT processing is controlled by the TIPs; the
TIPs use some common IVT modules.

Level -

For logical records, an octal number through
17 in the system-supplied 48-bit marker that
terminates a short or zero-length PRU.

Line -

A connection between an NPU and a terminal, or
a group of terminals.

Link -

A connection between two NPUs or an NPU and a
host

.

Link Interface Package (LIP) -

The CCP program that handles frame transfers |
across a trunk; that is, across the connection
between a local and a remote NPU. A LIP uses
CDCCP protocol and interfaces on the local NPU
side to the HIP. On the remote NPU side, the
LIP interfaces with the appropriate TIP. In
both local and remote NPUs, the LIP interfaces
with the multiplexer subsystem for transfer |
across the trunk.

List -

A group of logical connections with the same
application list number, which are linked
together by NAM and treated as a single entity
in NETGETL or NETGTFL calls.

List Number -

See Application List Number.

Load -

The process of moving programs downline from
the host and storing them in the NPU main and
micromemory. Loading of a remote NPU is accom-
plished by the host through the use of the LIP
in the local NPU.

Local Configuration File (LCF) -

A file in the host computer system, containing
information on the logical relationships among I

the service elements in the network. The file |
contains a list of the application programs
available for execution in the host computer,
and the users that require automatic login to I
them. This is a NOS direct access permanent

|

file.

Local NPU -

An NPU that is connected to the host via a I
coupler. A local NPU always contains a HIP for
processing block protocol transfers across the
host/local NPU interface. Synonymous with
front-end NPU. Contrast with remote NPU.

Logical Connection -

A logical message path established between two
application programs or between a network
terminal and an application program. Until
terminated, the logical connection allows mes-
sages to pass between the two entities.

Logical Line -

The basic message unit of a console device.
|

See Physical Line.

Logical Link (LL) -

The portion of a logical connection defined by
host node and terminal node ID numbers. A
logical link is an error-free path across the
network over which many separate logical con-
nections are multiplexed. A logical link cannot
traverse more than two NPUs.

60499500 R C-5

Logical Record -

Under NOS, a data grouping that consists of one
or more PRUs terminated by a short FRU or zero-
length FRU. Equivalent to a system-logical-
record under NOS/BE.

Loop Hultiplexer (LM) -

| The hardware that interfaces the CLAs (which

convert data between bit-serial digital and
bit-parallel digital character format) and the
input and output loops.

Low/Hedimum-Speed Voice-Grade Line -

A line that operates at bit transmission rates
at or below 19200 b/s. These lines character-
istically connect individual terminals to an

| NPU or to an X.25 PAD service.

Hacromemory -

The portion of 255x Series network processing
unit memory that contains code involved in data
communication, such as the Terminal Interface

I Program. It is partly dedicated to programs
and common areas; the remainder is buffer area
used for data and overlay programs. Word size
is 16 data bits plus three additional bits for
parity and program protection. Memory is pack-
aged in 16K and 32K word increments.

Message -

A logical unit of information, as processed by
an application program. When transmitted over
a network, a message can consist of one or more
blocks.

Micromemory -

The micro portion of the NPU memory. This con-

| sists of 8192 words of 64-bit length. 1024
words are Read Only Memory (ROM) ; the remaining
words are Random Access Memory (RAM) and are
alterable. The ROM memory contains the emulator
microprogram that allows use of assembly lan-
guage.

Microprocessor -

The portion of the NPU that processes the pro-
grams.

Mode 4 -

| A communication line transmission protocol that
requires the polling of sources for input to
the data communication network. Control Data
defines two types of mode 4 equipment, mode 4A
and mode 4C. Mode 4A equipment is polled
through the hardware address of the console
device, regardless of how many devices interface
to the network. Mode 4C equipment is polled
through separate hardware addresses, depending
on the point each device uses to interface with
the network.

Modem -

A hardware device for converting analog levels
| to digital signals and the converse. Telephone

lines interface to digital equipment via modems.
Modem is synonymous with data set.

Module -

See Program.

Monitor -

The portion of the CCP base system software |
responsible for time and space allocation with-
in the computer. The principal monitor program
is 0PSM0N, which executes OPS level programs by
scanning a table of programs that have pending §
tasks

.

Multiplex Loop Interface Adapter (MLIA) -

The hardware portion of the multiplex subsystem
that controls the multiplexing loops (input and
output) as well as the interface between the
NPU and the multiplexing subsystem.

Multiplex Subsystem -

The portion of the base NPU software that per- I

forms multiplexing tasks for upline and downline
data, and also demultiplexes upline data from
the CIB and places the data in line-oriented
input data buffers.

Neighbor NPUs -

Two NPUs connected to one another by means of a
trunk. |

Network -

An interconnected set of network processing
units, hosts, and terminal devices. 1

Network Access Method (NAM) -

A software package that provides a generalized
method of using a communication network for
switching, buffering, queuing, and transmitting
data. NAM is a set of interface routines used
by a terminal servicing facility for shared
access to a network of terminals and other
application programs, so that the facility
program does not need to support the physical
structures and protocols of a private communi-
cation network.

Network Address -

The address used by block protocol to establish
routing for the message. It consists of three
parts; DN - the destination node, SN - the
source node, and CN - the connection number.

Network Configuration -

The process of setting tables and variables
throughout the network to assign lines, links,
terminals, etc., so that all elements of the
network recognize a uniform addressing scheme.
After configuration, network elements accept
all data commands directed to/through themselves
and reject all other data and commands.

Network Configuration File (NCF) -

A network definition file in the host computer,
containing information on the network elements
and permissible linkages between them. The
status of the elements described in this file
is modified by the network operator in the
course of managing the network through the
Communications Supervisor. This is a NOS direct I
access permanent file.

Network Definition File -

Either of the two types of NDL program output
files that determine the configuration of the
network. This can be a network configuration
file or a local configuration file.

C-6 60499500 R

Network Definition Language (NDL) -

The compiler-level language used to define the

network configuration file and local configu-

ration file contents.

Network Definition Language Processor (NDLP) -

The network software module that processes an
NDL program as an off-line batch job to create
the network definition files and other NDL pro-
gram output.

Network Element -

Any configurable entity supervised or loaded by
the Network Supervisor. A network element con-
sists of any entity in the total network that
is not a communication element ; this term is
usually applied to the data communication net-
work entities comprising the NPUs and their
linkages

.

Network Logical Address -

See Network Address.

Network Processing Unit (NPU) -

The collection of hardware and software that
switches, buffers, and transmits data between
terminals and host computers.

Network Supervisor (NS) -

A portion of the network software, written as a
NAM application program. The Network Supervisor
dumps and loads the NPUs in the communication
network

.

Node -

A hardware or software entity that creates,
absorbs , switches , and/or buffers message
blocks. NPUs and host couplers are communi-
cation nodes of the network.

NPU Operator -

The network operator who resides at a terminal
and controls network elements such as NPUs

,

trunks, logical links, lines, and terminals.
Contrast with Host Operator. Also, an operator
using the offnet NPU console.

Off-Line Diagnostics -

Optional diagnostics for the NPU that require
the NPU to be disconnected from the network.

On-Line Diagnostics -

Optional diagnostics for the NPU that can be
executed while the NPU is connected to, and
operating as a part of the network. Individual
lines being tested must, however, be discon-
nected from the network. These diagnostics are
provided if the user purchases a network main-
tenance contract.

OPS Monitor -

The NPU monitor. See Monitor.

Output -

Information flowing downline from the host.

Output Buffer -

Any buffer that is used to hold a downline mes-
sage from the host.

Packet -

A group of binary digits, including data and

call control signals, which is switched as a

single unit. The data, control signals, and
error-control information are arranged in a

specific format.

Packet Assembly/Disassembly Service (PAD) -

A definition of the procedures for the operation
of an asynchronous terminal through a packet-
switching network (PSN).

Assembly: The accumulation of characters from
an asynchronous device into data blocks for
transmission via a PSN. Disassembly: The

encoding of blocks for transmission to an
asynchronous terminal.

Packet-Switching Network (PSN) -

A network that provides data communication

service between various terminal and computer

systems or networks. The PSN is usually
licensed as a common carrier.

Terminal interface to a PSN is defined by the

packet assembly/disassembly (PAD) service. PSN

interface with a NOS network is defined by the

X.25 protocol.

PAD SubTIP -

A subTIP of the X.25 TIP that allows asynchro-
nous ASCII terminals to communicate over a

packet-switching network.

Paging (Screen) -

The process of filling a CRT display with data

and holding additional data for subsequent dis-
plays. Changing the paged display is terminal
operator controlled if the page wait option is

selected.

Parity -

A type of data assurance. The most common
parity is character parity; that is, the sup-
plying of one extra bit per character so that

the sum of all the bits in the character
(including the parity bit) is always an even

(even parity) or odd (odd parity) number.

Pascal -

A high level programming language used for CCP
programs. Almost all CCP programs are written
in the Pascal language.

Passive Device -

Any device incapable of conducting both input

and output and therefore incapable of dialog
with the Network Validation Facility. Batch
unit record peripherals are typical examples of

passive devices. Also known as a nonconsole

device. Contrast with Interactive Device.

Password -

A parameter in the terminal operator's login
procedure type-in, used for additional access
security by the Network Validation Facility.
This parameter does not appear in any super-
visory messages.

60499500 R C-7

Peripheral Processor Unit (PPU) -

The hardware unit within the host computer that

performs physical input and output through the

computer's data channels.

Physical Line -

A string of data that is determined by the ter-
minal's physical characteristics (page width or

line feed). Contrast with logical line, which

is determined by a carriage return or other

forwarding signal.

Physical Link -

A connection between two major network nodes

such as neighboring nodes. Messages can be

transmitted over active physical links.

Physical Record Unit (PRU) -

Under NOS, the amount of information trans-
mitted by a single physical operation of a

specified device. The size of a PRU depends on

the device, as shown in table C-2.

A PRU that is not full of user data is called a

short PRU; a PRU that has a level terminator
but no user data is called a zero-length PRU.

TABLE C-2. PRU SIZE

Device
Size in Number
of 60-Bit Words

Mass storage

Tape in SI format
with binary data

Tape in I format

Tape in other format

64

512

512

Undefined

Polling -

The process of requesting input from hardware

or software that only provides input on request.
Polling is a concept of several network proto-
cols and is used to avoid input contention.
Mode 4 terminals are polled for input by the

Terminal Interface Program servicing them; an
application program polls all logical connec-
tions for input, whether the logical connections
are with controlled mode 4 terminals or free-
wheeling asynchronous terminals.

Port
The physical connection in the NPU through which
data is transferred to/from the NPU. Each port
is numbered and supports a single line. Sub-
ports are possible but not used in the current
version of CCP.

traffic. Terminals with priority are the last

devices for which network traffic is suspended

when traffic must be temporarily stopped because

the network is operating at capacity. Devices

with priority receive preferential treatment of

their input or output.

Program Initiation Control Block (PICB) -

A program initiation control block consisting

of a sequence of commands that control NPU load

or dump operations for a specific NPU variant.

Several PICB's may exist on the network load

file, each as a separate record with a unique

NPU variant name as its record name

.

Protocol -

A set of standardized conventions that must be

used to achieve complete communication between

elements in a network. A protocol can be a set

of predefined coding sequences, such as the

control byte envelopes added to or removed from

data exchanged with a terminal; a set of data
addressing and division methods, such as the

block mechanism used between an application

program and the Network Access Method; or a set

of procedures used to control communication,

such as the supervisory message sequences used

between an application program and the Network

Access Method.

PRU Block (PRUB) -

Physical record unit block. A block format for

batch devices that is compatible with the host's

PRU (batch file) handling capabilities. CCP

TIPs convert all upline batch data to this

format (exception: no transformations are made

to transparent data except to put the messages
into PRUBs). By this method, application pro-

grams in the host need only to be able to

process batch data in PRU format rather than in

the multiplicity of formats that real terminals

use. Downline messages from the host to real

batch devices are converted from PRUB to real

terminal format. PRUB processing is controlled

by the TIPs with the help of the BIP.

PRU Device -

Under NOS, a mass storage device or a tape in

SI or I format, so called because records on

these devices are written in PRUs

.

Public Data Network (PDN) -

A network that supports the interface described

in the CCITT protocol X.25.

Queues -

Sequences of blocks, tables, messages, etc.

Most network queues are maintained by leaving

the queued elements in place and using tables

of pointers to the next queued element. Most
queues operate on a first-in-first-out basis.

A series of worklist entries for a TIP is an

example of an NPU queue.

Primary Function Code (PFC) -

See Function Codes

.

Priority -

The condition when traffic through the network
is maintained preferentially for one or more
devices out of all devices producing network

Random File -

In the context of the NOS operating system, a

file with the random bit set in the file envi-
ronment table; individual records are accessed
by their relative PRU numbers.

C-8 60499500 S

Record -

(1) A data unit defined for the host record
manager; (2) a data unit defined for HASP work-
stations. In either case, a record contains
space for at least one character of data and
normally has a header associated with it. HASP
records can be composed of subrecords.

Regulation -

The process of making an NPU or a host progres-
sively less available to accept various classes
of input data. The host has one regulation
scheme; the host and multiplex interfaces of a

I local NPH have another scheme; and the multiplex
interface to a neighbor NPU has a third regula-
tion scheme. Some types of terminals (for
instance, HASP workstations) may also regulate
data. Messages are classified as supervisory
or service (highest priority) priority data and
nonpriority data. Priority of data is estab-

| lished on a device-by-device basis through the
PRI classification in NDL.

Remote NPU -

A network processing unit linked indirectly to
a host computer through other network processing
units. Contrast with Local NPU.

Response Messages -

A subclass of supervisory or service messages
that is a response to a supervisory or service
message of the originator. Response messages
normally contain the requested information or
indicate that the requested task has been
started or performed. Error or abnormal
responses are sent when the responder cannot
deliver the information or start the task.

Return Parameter -

A parameter in an AIP call that provides as
input to the AIP routine the identification of
a location to which AIP should transfer infor-
mation. This location is within the application
program's field length and outside of the AIP
portion of that field length. A return param-
eter cannot be a constant or a value in itself.
Return parameters are always symbolic addresses.
The time at which transfer of information from
AIP occurs depends on whether the program is
operating in parallel mode and whether use of
the parameter is global to all AIP routines or
local to the call in which it is used.

Routing -

The process of sending data/commands through
the network to its destination (for instance, a
terminal). The network logical address (DN,
SN, CN) is the primary criterion for routing.
In the NPU, directories are used to accomplish
the routing function.

Sequential -

A file organization in which records are stored
in the order in which they are generated.

Service Channel -

I

The network logical connection used for service
message transmission. For this channel, the
connection number is 0. The channel is always
configured, even at load time.

Service Message (SM) -

The network method of transmitting most command
and status information to/froa the NPU. Service
messages use CMD blocks in the block protocol.

Service Module (SVM) -

The set of NPU programs responsible for proc-
essing service messages. SVM is a part of the
BIP.

Short PRU -

A PRU that does not contain as much user data
as the PRU can hold, and is terminated by a
system terminator with a level number. Under
NOS, a short PRU defines EOR.

Source -

The terminal or host computer program that
creates a message.

Source Node (SN) -

The node that interfaces directly to the source
of a network data block.

String -

A unit of information transmission. One or more
strings compose a record. A string can be com-
posed of different characters or contiguous
identical characters.

Subfunction Code (SFC) -

See Function Codes.

Subport -

One of several addresses in a port. In this
release of CCP, subport is always equal to 0.

Supervisory Message -

A message block in the host not directly
involved with the transmission of data, but
which provides information for establishing and
maintaining an environment for the communication
of data, between the application program and
NAM, and through the network to a destination
or from a source. Supervisory messages may be
transmitted to an NPU in the format of a service
message.

Switched Line -

A communication line connected with one network
processing unit but able to be connected to any
one of several terminals via a switching mecha-
nism, such as a dialed telephone line.

Switching -

The process of routing a message or block to
the specified internal program or external
destination.

Symbolic Address -

The abstract identification of an entity serving
as a location from which or to which informa-
tion can be transferred. A symbolic address
can contain information, but does not constitute
information. A symbolic address is an identi-
fier represented in character form by the
programmer and is equivalent to the concept of
a variable in the terminology of some program-
ming languages. In FORTRAN or ALGOL programs,
typical symbolic addresses include array names,

60499500 R C-9

array element names, and variable names. In

COMPASS, a symbolic address is equivalent to a

label in a source code location field; a rela-

tive address cannot be used as a symbolic
address. In COBOL, a symbolic address is

equivalent to a level 01 Data Description entry.

In SYMPL, a symbolic address is equivalent to
the name of an array or scalar item in a data

declaration.

Synchronous -

| A transmission in which character synchro-
nization is achieved by recognition of a prede-
fined sync character that precedes the block of

data.

Terminal -

An entity, external to the data communication
network but connected to it via a communication
line, that supplies input to, and/or accepts

output from, an application program. In the

context of this manual, a terminal is each

| separately addressable group of devices com-
prising a physical terminal or station.

Terminal Address -

I

The hardware address of a mode 4 console, a
mode 4C printer or a 3780 card punch. This
term is used in various ways within mode 4 com-
munications documentation, as shown in table
C-l.

Terminal Class (TC) -

An NDL parameter and supervisory message field
value describing the physical attributes of a
group of similar terminals, in terms of an
archetype terminal for the group.

Terminal Control Block (TCB) -

A control block within CCP containing configu-
ration and status information for an active
terminal. TCBs are dynamically assigned.

Terminal Definition Commands -

A group of commands that allow the operator at
the terminal or a host application program to
control some of the IVT transforms made by a

TIP.

Terminal Interface Program (TIP) -

A portion of the Communications Control Program
that provides an interface for terminals con-
nected to a 255x Series network processing unit.
The TIP performs character conversion to and

| from 7-bit ASCII, limited editing of the input
and output stream, parity checking, and so
forth.

Terminal Name (TNAME) -

A name of up to seven letters and digits known

I
to the network and used to identify a device to
the network operator.

Terminal Node -

The node number associated with an NPU that

interfaces with a terminal.

Terminal Operator -

The person operating the controls of a terminal.
Contrast with User.

Terminal Servicing Facility -

See Application Program.

Test Utility Program (TUP) -

A debugging utility that supports breakpoint
debugging of CCP as well as other utility type

operations such as loading and dumping.

Text Area (TA) -

The area within the application program that
receives the message block text from a NETGET,
NETGETF, NETGTFL, or NETGETL call, or contains
the message block text for a NETPUT or NETPUTF
call.

Text Length in Characters (TLC) -

A field in the application block header spec-
ifying the number of character bytes of text in
the message block.

Text Length Maximum (TLMAX) -

Maximum length in host central memory words of I

the supervisory message or network data block |

that the application program will accept for

processing.

Timing Services -

The subset of base system programs within CCP
which provide timeout processing and clock times
for messages, status, etc. Timing services

provide the drivers for the real-time clock.

Trailer -

Control information appended to the end of a
message unit. A trailer contains the end-of-
data control signals . Trailers can be generated
by the terminal or by an intermediate device
such as a frame generator. Not all headers are

matched with trailers, although some devices
split their control information between a header
and a trailer. The trailer usually contains a
data assurance field such as a CRC-16 or a
checksum. Like headers, trailers are generated
and discarded at various stages along a data I

block's path. |

Transparent Mode -

A software feature provided by the Network
Access Method and the network processing unit
TIP. When transparent mode transmission occurs
between an application program and a terminal,
the Network Access Method does not convert data
to or from display code, and the TIP does not

edit the character stream or convert the char- _

acters to or from 7-bit ASCII code. When no |
parity is in effect for the terminal and trans-
parent mode transmission occurs, all eight bits
of the character byte can be used to represent
characters in 256-character sets (such as
EBCDIC).

Trunk -

The dedicated communication line connecting two
network processing units.

Trunk Protocol -

The protocol used for communicating between
neighboring NPUs. It is modified CDCCP proto-
col that uses the frame as the basic communica- |
tions element.

C-10 60499500 R

Typeahead (Terminal) -

The ability of a terminal to enter input data

at all times. The ASYNC TIP supports typeahead;

the X.25 TIP supports typeahead if it is pro-
vided by the PSN.

Upline -

The direction of input flow to a host computer

application program.

User -

That person or group of people who are the

preparers and /or recipients of messages com-
municated with an application program via the

network. A user may interface with one or more
terminals, or with no terminals. Contrast with
terminal operator.

User Name -

The NOS validation file parameter entered by
the terminal operator during the Network Vali-
dation Facility log-in procedure.

Virtual Channel (X.25/PAD) -

A channel defined for moving data between a
terminal and a host. Virtual channels are
defined for the length of time that the terminal
is connected to the PSN.

Word -

The basic storage and processing element of a
computer. The NPU uses 16-bit words (main

memory) and 32-bit word (internal to the micro
processor only). All interfaces are 16-bit
word (DMA) or in character format (multiplex

loop interface). Characters are stored in main
memory two per word. Hosts (CYBER series) use
60-bit words but a 12-bit byte interface to the
NPU.

Some terminals such as a HASP workstation can

use any word size but must communicate to the

NPU in character format. Therefore, workstation
word size is transparent to the NPU.

Worklist Processor -

Within CCP, the base system programs responsible
for creating and queuing worklist entries.

Worklists -

Within CCP, packets of information containing
the parameters for a task to be performed.
Programs use worklists to request tasks of OPS
level programs. Worklist entries are queued to

the called program. Entries are one to six
words long, and a given program always has

entries of the same size.

X.25 Protocol -

A CCITT protocol used by the packet-switching
network. It is characterized by high-speed,
framed data transfers over links. A PSN
requires a PAD access for attaching asynchronous
terminals

.

X.25 TIP -

The CCP TIP that interfaces an NPU to a packet-
switching network.

Zero-Length PRU -

A PRU that contains system information but no
user data. Under NOS, a zero-length PRU defines
EOF.

MNEMONICS
Following is a list of mnemonics used in this

manual

.

ABH Application Block Header

ABL Application Block Limit

ABN Application Block Number

ABT Application Block Type

ACN Application Connection Number

ACT Application Character Type

AIP Application Interface Program

ALN Application List Number

ANAME Application Name

APL A Programming Language

ASCII American Standard Code for Info;

Interchange

ASYNC Asynchronous

BCD Binary Coded[Decimal

BIP Block Interf:ace Package

BLK Message Block

BRK Break Block

BSC Binary Synchironous Communication

BT Block Type

Bl, B2 User-definedI breaks

CA Cluster Address

CCITT Comite Consultif International
phonique et Telegraphique (an inter-
national communications standards
organization)

CCP Communications Control Program

CDCCP CDC Communications Control Procedure

CDT Conversational Display Terminal

CE Customer Engineer

CIB Circular Input Buffer

CLA Communications Line Adapter

CMD Command Block

CR Carriage Return

CRC Cyclic Redundancy Check

CRT Cathode Ray Tube

CS Communications Supervisor

60499500 R C-ll

DBC Data Block Clarifier (for blocks/SVM) ICT

DBZ Downline Block Size INITN

DEL Delete character INITR

DLFP Debug Log File Postprocessor utility ISO

DN Destination Node IVT

DSR Data Set Ready LCF

DT Device Type LF

EBCDIC Extended Binary Coded Decimal Inter- LFG

change Code
LIP

EC Error Code LP

EOF End of File MCS

EOI End of Information MLIA

EOJ End of Job MPLINK

EOM End of Message MSG

EOR End of Record MTI

EOT End of Transmission
NAK

ETB End of Transmission Block
NAM

ETX End of Text
NCB

FD Forward Data (block protocol)
NCF

FDX Full Duplex
NDA

FE Format Effector
NDLP

FET File Environment Table
NIP

FF Form Feed
NLF

FN Field Number
NOP

FS Forward Supervision (block protocol)
NPU

FV Field Value
NS

HA Header Area
NVF

HASP Houston Automatic Spooling
Protocol

Program
ODD

HDLC High-level Data Link Control PA

HDX Half Duplex PAD

HIP Host Interface Package PDN

HO Host Ordinal PFC

HOP Host Operator PIP

IAF Interactive Facility program PL

ICMD Interrupt Command PPH

ICMDR Interrupt Command Response PRU

Input Character Type

Initialization Block Acknowledgment

Initialization Block Request

International Standards Organization

Interactive Virtual Terminal

Local Configuration File

Line Feed

Load File Generator

Link Interface Package

Line printer

Message Control System

Multiplex Loop Interface Adapter

The Pascal link editor

End-of-message block

Message Type Indicators (Mode 4 pro-

tocol)

Negative Acknowledgment Block

Network Access Method

Network Configuration Block

Network Configuration File

Network Dump Analyzer

Network Definition Language Processor

Network Interface Program

Network Load File

Network Operator

Network Processing Unit

Network Supervisor program

Network Validation Facility

Output Data Demand (Multiplex sub-

system)

Parity

Packet Assembly/Disassembly

Public Data Network

Primary Function Code

Peripheral Interface Program

Page Length (IVT)

Peripheral Processing Unit

Physical Record Unit

C-12 60499500 S

PRUB

PSN

PW

QDEBUG

QTRM

RAH

RBF

| RC

RCB

ROM

RR

RS

RST

I RTS

SAM-P

SARM

SCB

SFC

S-Frame

SRCB

| SIX

SVM

SYNC

I
TAA

TAF

Physical Record Unit Block

Packet Switching Network

Page Width

PASCAL Debugging package

Queued Terminal Record Manager

Random Access Memory

Remote Batch Facility program

Reason Code

Record Control Byte (HASP protocol)

Read Only Memory

Receive Ready (trunk or X.25 protocol)

Reverse Supervision (block protocol)

Reset Block

Request to Send

System Autostart Module Program

Set Asynchronous Mode (trunk or X.25
protocol)

String Control Byte (HASP protocol)

Secondary Function Code

Supervisory Frame (trunk or X.25 pro-
tocol)

Subrecord Control Byte (HASP protocol)

Start of Text

Service Module (for processing service
messages)

Synchronizing Element

Text Area Array

Transaction Facility

TC Terminal Class

TCB Terminal Control Block

TIP Terminal Interface Program

TLC Text Length in Characters

TLMAX Text Length Maximum

TNAME Terminal Name

TO Timeout

TTY Teletypewriter

TUP Test Utility Program

TVF Terminal Verification Facility

UA Unnumbered Acknowledgment (trunk or
X.25 protocol)

UBZ Upline Block Size

U-Frame Unnumbered Frame (see UA and UI)

UI Unnumbered Information frame (trunk or
X.25 protocol)

US Unit Separator

XBZ Transmission Block Size

X-OFF Stop character (ASYNC protocol)

X-ON Start character (ASYNC protocol)

XPT Transparent

X.3 CCITT protocol for asynchronous ter-
minal access to a packet-switching
network

X.25 CCITT protocol for packet-switching
networks

X.28 CCITT protocol for terminal access to
PSN/PAD |

X.29 CCITT protocol for host access to
PSN/PAD |

60499500 R C-13

APPLICATION PROGRAM CALL STATEMENT SUMMARY

This appendix summarizes the formats of calls to
AIP and QTRM routines. The general format of each
routine is listed alphabetically without description
opposite the page number where the routine is com-
pletely described.

COMPILER LEVEL (NETIO-RESIDENT
OR NETIOD-RESIDENT)

Call Format Page

CALL NETCHEK 5-16

CALL NETDBG(dbugsup,dbugdat,avail) 6-7

CALL NETDMB(dumpid,ecs) 6-9

CALL NETGET(acn,ha,ta,tlmax) 5-4

CALL NETGETF(acn,ha,na,taa) 5-6

CALL NETGETL(aln,ha,ta,tlmax) 5-10

CALL NETGTFL(aln,ha,na,taa) 5-12

CALL NETLGS (address, size) 6-15

CALL NETLOG(address, size, format) 6-9

CALL NETOFF 5-4

CALL NETON(aname,nsup,status,minacn, 5-1
maxacn)

CALL NETPuT(ha.ta) 5-7

CALL NETPUTF(ha,na,taa) 5-8

CALL NETREL(lfn,msglth,nrewind) 6-7

CALL NETSETF(flush.fetadr) 6-8

CALL NETSETP(option) 5-15

CALL NETSTC(onoff .avail) 6-15

CALL NETWAIT(time.flag) 5-14

CALL NST0RE(array, field .value) 4-11

[ivalue=]NFETCH(array, field) 4-12

ENTER FORTRAN-X QTCLOSE 8-15

ENTER FORTRAN-X QTENDT 8-14

ENTER FORTRAN-X QTGET USING 8-13
ta-in

ENTER FORTRAN-X QTLINK 8-14

Call Format

ENTER FORTRAN-X QTOPEN USING
net-info-table

ENTER FORTRAN-X QTPUT USING
ta-out-acOj_

ENTER FORTRAN-X QTTIP USING
ta-out-acn^

ASSEMBLY LANGUAGE LEVEL
(NETTEXT-RESIDENT)

Page

8-10

8-11

8-14 |

Call Format Page

[label] NETCHEK 5-16

[label] NETDBG dbugsup ,dbugdat

,

avail
6-7

label2 NETDBG dbugsup ,dbugdat

,

avail,LIST
6-7

[label 1] NETDBG (LIST=label2
(LIST-register name f

6-7

[label] NETDMB dumpid,ecs 6-9

label2 NETDMB dumpid,ecs,LIST 6-9

[label 1] NETDMB (LIST=label2
\LIST=register name }

6-9

[label] NETGET acn,ha,ta,tlmax 5-4

label2 NETGET acn,ha,ta,tlmax,
LIST

5-4

[label 1] NETGET fLIST=label2

\ LIST=register name }

5-4

[label] NETGETF acn,ha,na,taa 5-6

label2 NETGETF acn ,ha ,na , taa ,LIS1 5-6

[labell] NETGETF { LIST=label2 I 5-6

[label] NETGETL

label2 NETGETL

[labell] NETGETL

[label] NETGTFL

label2 NETGTFL

[LIST=register name)

aln,ha,ta,tlmax 5-10

aln,ha,ta,tlmax,LIST 5-10

|LIST=label2) 5-10
(LIST=register name)

aln,ha,na,taa 5-12

aln,ha,na, taa,LIST 5-12

60499500 S D-l

Call Format Page

[labell] NETGTFL (LIST-label2 \

\ LIST=reglster name

/

5-12

[label] NETLGS address , size 6-15

label2 NETLGS address , size , LIST 6-15

[labell] NETLGS (LIST=label2 \

lLIST=register name/
6-15

[label] NETLOG address , size .format 6-9

label2 NETLOG address , size .format

,

LIST

6-9

[labell] NETLOG (LIST=label2 1

\ LIST=register name/

6-9

[label] NETOFF 5-4

[label] NETON aname.nsup, status,
mlnacn ,maxacn

5-1

label2 NETON aname ,nsup , status

,

5-1

[labell] NETON

[label] NETPUT

label2 NETFOT

[labell] NETPUT

[label] NETPUTF

label2 NETPUTF

[labell] NETPUTF

[label] NETREL

mlnacn ,maxacn ,LIST

(LIST-label2
(LIST=register name)

5-1

ha.ta 5-7

ha, ta, LIST 5-7

<LIST«label2

\ LIST=register name)

5-7

ha,na,taa 5-8

ha,na,taa,LIST 5-8

(LIST-label2 \
5-8

\LIST-register name/

lfn,msglth,nrewlnd 6-7

Call Format

label2 NETREL

[labell] NETREL

Ifn.msglth,
nrewlnd.LIST

(LIST=label2 1

\LIST=register name)

[label] NFETCH

[label] NSTORE

\LIST-register name J

array, field, /Xj\
Ibj/

array , field=value

Page

6-7

6-7

[label] NETSETF flush ,fetadr 6-8

label2 NETSETF flush,fetadr,LIST 6-8

[labell] NETSETF ILIST-Iabel2 \

(LIST=register name/
6-8

[label] NETSETP option 5-15

label2 NETSETP option,LIST 5-15

[labell] NETSETP (LIST-label2 >

\LIST»reglster name/
5-15

[label] NETSTC onoff .avail 6-15

label2 NETSTC onoff ,avail .LIST 6-15

[labell] NETSTC (LIST-label2 \

(LIST=register name/
6-15

[label] NETWAIT time,flag 5-15

label.2 NETWAIT time,flag,LIST 5-15

4-10

4-11 |

D-2 60499500 S

INDEX

3-51
AB character 3-51
Abort-output-block (AB) character
Access word 6-1, 6-4
Accessing the network 5-1

Application
Block limit 2-4, C-l
Block type 2-7, C-l
Character types 2-23, C-l
Connection number 2-9, 4-8, C-l
Job structure 6-1

List number 2-9, 3-13, 3-27, C-l
Size 2-3

Application connection rejection 3-13
Application Interface Program (AIP)

Communication with NIP 4-15
Diagnostic messages B-l
Function 1-4

Internal procedure calls 4-17
Internal tables and blocks 4-18
Language interfaces 4-1

List number 2-9
Loading of 5-1, 6-1
Macro call formats 4-2
Residence 1-4
Statements 5-1, D-l
Subroutine call formats 4-12

Application interrupt 3-35
Application program

Connecting with terminal 3-1
Content 6-3
Dayfile messages B-l
Dependencies 6-14
Disabled 6-3
Execution 6-3
Failure and recovery 9-1

Job structure 6-1

Mandatory 6-5
Message types 2-7
NAM application programs 1-6
Name 5-1, C-l
Primary 6-5
Privileged 6-5
Reserved names 5-2
Restricted 6-5
Unique identifier 6-5
Validation (see Network Validation Facility)

Archetype terminal C-l
ASCII terminals A-2
Assembly errors B-l
ASYNC TIP C-l
Asynchronous supervisory messages (see Supervisory

messages)
Autolink utility 1-6
Automatic input C-l
Automatic login C-l
Auto-recognition C-2

Backspace character (BS) 3-51
Base system software 1-5, C-2
Batch device C-2
BI/MARK/R 3-34

Block
Acknowledgment (see Block-delivered)
Definition 2-1, C-2
Header area 2-8, 2-24
Length 2-1

Limit 2-4, 3-6, 3-29, C-2
Null 2-8, 5-5, 5-11

Size 2-2
Text area 2-8

Type 5-10
Block-delivered 3-29
Block Interface Program (BIP) 1-7, 1-8

Block mode operation 2-4

Block-not-delivered 3-29
BR command 3-51
Break 3-35, C-2
Break key as user break 1 (BR) 3-51
BS character 3-51
BSC TIP C-2
Buffering C-2
BYE 3-16
Bl character 3-51
B2 character 3-51

3-51

Call statement summary D-l
Cancel character (CN) 3-51
Carriage-return idle count (CI)

CASF bit 6-5
Cassette drive 2-1, C-2
Change-connection-list 3-25
Change-input-character-type 3-39
Character

Conversion A-l
Definition C-2
Set Anomalies A-2
Sets A-l
Translation (See Character conversion)
Type 2-21, 3-39

CHARGE command 6-2

Checking completion of worklist processing
(NETCHEK) 5-16

CI command 3-51
Cluster C-2
CN command 3-51
Code conversion aids A-6
Code sets A-l
Commands, NOS batch job
Communication

6-2

Element C-3
Interruptions
Line C-3
Network 1-2

,

3-32

C-3
Communication Control Program (CCP)

Hardware environment 2-1

In an NPU 2-1
Overview 1-6

Communications Supervisor (CS) 1-5, C-

COMPASS
Assembly error messages B-l
Interface 4-2
Macro forms 4-2

60499500 R Index-

1

Computer network 1-1

COMTNAP 6-14
CON/ACRQ/A 3-19, 4-4

CON/ACRQ/R 3-17, 4-4
CON/CB/R
CON/END/N
CON/END/R
CON/REQ/A
CON/REQ/N
CON/REQ/R

3-15, 4-4

3-16, 4-5

3-16, 4-5

3-13, 4-5

3-12, 4-4

3-3, 4-4

Connecting to network (NETON) 5-1

Connection
Application-to-application 3-14
Devices-to-applications 3-1

Failures 3-16

Identifiers 2-9

Lists 3-25, 5-10
Monitoring 3-18

Termination 3-24
Connection-accepted 3-12

Connection-broken 3-14, 3-25

Connection-ended 3-14, 3-25
Connection-initialized 3-14

Connection-rejected 3-13

Connection-request 4-4
Control character A-l
Controlling data flow 3-29

Controlling list duplexing 3-26
Controlling list polling 3-25

Controlling parallel mode (NETSETP) 5-15

Converting data 3-39
CP command 3-51

fcT"! xiii
Cross System software 1-6, C-3
CSOJ bit 6-5

4-6

ct xiii
CT command 3-51
CTRL/CHAR/A 3-50
CTRL/CHAR/H 3-50
CTRL/CHAR/R 3-49
CTRL/DEP/R 3-48,
CTRL/RTC/A 3-55

CTRL/RTC/R 3-55
CTRL/TCD/R 3-56
CUCP bit 6--1

Cursor positioning after input (CP)
CYBER channel coupler C-3

3-51

Data
Binary character A-l
Coded character A-l
Conversion 3-39

Flow control 3-29
Message protocols 2-9

Truncation 3-39

Data block 2-1

Data message content and protocols 2-10

Dayfile messages B-l

DC/CICT/R 3-40
DC/TRU/R 3-43
Debug log file processor (DLFP)

Command 6—10
Directive keywords 6-11

Messages B-l
Debug log file utilities 6-6

Debugging methods 6-6

Dedicated line C-3
Define-multlple-terminal-characteristics 3-

Define-terminal-characteristics 3-48

Delimiters for single-message transparent input
(DL) 3-51

Delimiting and transmitting terminal input

Normalized mode 2-5

Transparent mode 2-20

Destination C-3
Device C-2, C-3
Device types 1-9

Diagnostic messages B-l

Disconnecting from network (NETOFF) 5-4

Display code A-2
Display of Host Nodes (HD) 3-52

DL command 3-51
Downline 2-1, C-4
Downline block size 2-2

Downline monitoring 3-22

EB command 3-52
Echoplex mode (EP) 3-52, C-4
EL command 3-52

End-connection 3-16
End-of-block character (EB) 2-6

End-of-file (EOF) 6-1

End-of-information (EOI) 6-1

End-of-line character (EL) 2-5

End-of-record (EOR) 6-1

EP command 3-52
ERR/LGL/R 3-62

Error reporting 3-61

Execution time errors B-l
Expand utility 1-6

FA command 3-52

Family name 3-10

Fatal errors 6-6, B-
FC/ACK/R 3-30

FC/BRK/R 3-32

FC/INACT/R 3-24
FC/INIT/N 3-14
FC/INIT/R 3-14

FC/NAK/R 3-30
FC/RST/R 3-32

Field number (FN)
Field value (FV)

3-51, 3-52, 3-53

3-51, 3-52, 3-53

File environment table (FET) 6-8

Flow control for input devices (IC) 3-52

Flow control for output devices (OC) 3-53
Format effectors 2-14, C-4
Formatter 1-6

FORTRAN
Interface 4-11

Sample program 7-1

Frame 2-1, C-4
Full-ASCII input mode (FA) 3-52

Full duplex C-4

GETACT macro 6-1

GETJN macro 6-3
Glossary C-l
Graphic character A-l

•49

Half duplex C-4
Hardware performance analyzer (HPA)
HASP TIP 2-4, C-4
HD command 3-52

Header area content 2-24
Header word (see Header area content)

1-6

Index-2 60499500 S

HELLO 3-16

HOP/DB/R 3-57
HOP/DE/R 3-58

HOP/DU/R 3-58
HOP/NOTR/R 3-59
HOP/REL/R 3-59
HOP/RS/R 3-59
HOP/TRACE/R 3-58
Host

Availability Display (HAD) 3-52
Definition C-5
Failure and recovery 9-1

Interface Program (HIP) 1-7, 1-8

Node C-5
Operator 1-5, C-5
Operator communication 3-56
Shutdown 3-60

IC command 3-52

IN command 3-52

Information identification protocols 2-7
Initialized-connection 3-5
In-line diagnostics 1-7, 1-8

INPUT 6-2
Input device and transmission mode (IN) 3-52
Input parameter C-5
Interactive device C-5
Interactive Facility (IAF) 1-4

Interactive Virtual Terminal (IVT) 2-10, 2-11, C-5
INTR/APP/R 3-36
INTR/RSP/R 3-36
INTR/USR/R 3-38

Job name 5-3, 6-3

Job structure 6-1

LDSET 4-11, 6-2
LF xlii
LI command 3-53

LIBRARY 4-11, 6-2
Line

Definition C-5
Failure and recovery 9-1

Feed idle count (LI) 3-53
Mode operation 2-4

Link editor 1-6
Link Interface Program (LIP)
List C-5
List connections 5-10
LK command 3-53
Load file generator (LFG) 1-5

Local configuration file (LCF) 1-5,

Lockout of unsolicited messages (LK)
Logical connections 1-9, 1-12, C-5
Logical-error message 3-61
Logical line C-5
Logical link

Definition C-5
Failure and recovery 9-1

Logical protocol 2-1

LOGIN 3-25
LOGOUT 3-25
LST/FDX/R 3-29

LST/HDX/R 3-28
LST/OFF/R 3-27
LST/ON/R 3-27

LST/SWH/R 3-27

1-7, 1-8, C-5

6-5, C-5
3-53

Macro assembler 1-6

Macromemory C-6
Macros 4-2

Managing connection lists 3-25

Memory requirements 6-17

MESSAGE 6-3

Message
Blocks 5-4

Definition 2-7, C-6

Protocols 3-1

Sequences 3-1

Transmission 5-4

Types 2-7

Message control system (MCS) 1-6

Micro assembler 1-6

Micromemory C-6
Mnemonics C-14
MODE 4 TIP C-6
Monitoring connections 3-18
Monitoring downline data 3-29
Multimessage transparent mode (XL) 3-53

Multiplex loop interface adapter (ML1A) C-6
Multiplex subsystem C-6

NETCHEK 5-16
NETDBG 1-12, 6-7

NETDMB 6-9

NETGET 5-4

NETGETF 5-6

NETGETL 5-10
NETGTFL 5-12

NETIO 4-11, 6-2, i

NETIOD 4-11, 6-2,
NETLGS 6-15
NETLOG 6-9

NETOFF 5-4
NETON 5-1

NETPUT 5-7

NETPUTF 5-8

NETREL 6-7

NETSETF 6-8

NETSETP 5-15
NETSTC 1-12, 6-15
NETTEXT 4-2, 6-2

NETWAIT 5-14
(NAM)

1-5,
-51

6-7

6-7

Network Access Method
Block 2-1

Concepts 1-8, 2-1

Configuration file (NCF)
Control character (CT) 3

Definition C-6
Definition Language (NOT,)

Dump Analyzer (NDA) 1-5

Dump file 1-5

Element C-7
Failure and recovery 9-1

Functions 1-2, C-6
Information table 8-1

Operation 1-10

Network Interface Program (NIP)
Communication with AIP 4-15
Diagnostic messages B-l

Function 1-4

Network load file (NLF) 1-5

Network processing unit (NPO) 1-6

Communications Control Program
Console 1-7

Failure and recovery 9-1

Network Supervisor (NS) 1-5, C-7

C-6

1-4, 6-16, C-7

C-7
1-6

60499500 S Index-3

Network Validation Facility (NVF) 1-5

NFETCH 4-10, 4-12
Node (see Network processing unit)
Normalized mode transmissions 2-4, 2-10, 2-11, A-2
NPU operator C-7
NSTATUS 5-3

NSTORE 4-11, 4-13

OC command 3-53
On-line diagnostics 1-7

OP command 3-53
OUTPUT 6-2
Output device selection (OP) 3-53
Overlays 6-3
Owning consoles 1-10

RECALL 5-8

Regulation C-9
Remote Batch Facility 1-6, 6-3

Request-application-connec tion 3-18
Request-terminal-characteristics 3-55

Request-to-activate-debug-code 3-57

Request-to-dump-field-length 3-58

Request-to-release-debug-log-file 3-59
Request-to-restart-statistics-gathering
Request-to-turn-AIP-tracing-off 3-59
Request-to-turn-AIP-tracing-on 3-58
Request-to-turn-off-debug-code 3-58

Reserved symbols 4-1

Reserved words 5-2
Reset 3-32

Return parameter C-9
Rollout 5-8, 5-14
Routing C-8

3-59

PA command 3-53
Packet C-7
Packet Assembly/Disassembly Access (PAD) C-7
Packet-Switching Network (PSN) 1-2, C-7
Page length (PL) 3-53
Page waiting (PG) C-7
Page width (PW) 3-53
Parallel mode operation 4-16, 5-15
Parameter list 4-1
Parity processing (PA) 3-53, C-7
Pascal 1-6, C-7
Passive device C-7
Peripheral Interface Program (PIP) 1-4

PG command 3-53
Physical line C-8
Physical protocol 2-1

Physical record unit (PRU)
Block C-8
Definition C-8
Device C-8
Short C-9
Zero-length C-ll

PL command 3-53
Polling C-8
Port C-8
Predefined symbolic names 4-1

Predefined symbolic values 4-2
Primary function code 2-32, 3-1

Priority C-8
Program execution processing 6-4

Protocols 2-1, 2-7, 2-10, C-8
Public data network (PDN) C-8
PW command 3-53

QTCLOSE statement 4-14, 8-15
QTENDT statement 4-14, 8-14

QTGET statement 4-14, 8-13"

QTLINK statement 4-13, 8-14
QTOPEN statement 4-13, 8-11

QTPUT statement 4-14, 8-12
QTTIP statement 4-14, 8-14
Queued terminal record manager (QTRM)

Call statement summary D-l
Diagnostic messages B-l
Function 1-4, 4-13
Network information table 8-1

Output
Editing 8-15
Formatting 8-15
Queuing 8-16

Sample program 8-18
Subroutines 8-11

Utilities 4-13
Queues C-8

2-32, 3-1

-7, 1-8, C-9

3-53

2-36

SE command 3-53
Secondary function code
Service channel C-9
Service module (SVM) 1-

SETLOF 6-8

SHUT/INSD/R 3-61
Shutdown 3-60
Source C-9
Special editing mode (SE)

Statistical file 6-15
Supervisory message

Asynchronous 2-35
Block header content
Content 2-31

Definition C-9
Format 3-1

Protocols 3-1

Queue 5-4, 5-6, 5-10, 5-12

Summarized 3-1

Synchronous 2-36
Switched line C-9
Symbolic address C-9
Synchronous C-10
Synchronous supervisory messages (see Supervisory

messages)
Syntax 5-1
System autostart module program (SAM-P) 1-7

System control point 6-1

TC command 3-53
TCH/TCHAR/R 3-46
Terminal access to the network 1-9

Terminal address C-10
Terminal-characteristics-definition
Terminal characteristics redefined
Terminal class 1-14, C-10
Terminal control block 9-1,
Terminal definition commands

Definition C-10
Range of possible values

Terminal failure and recovery 9-1

Terminal Interface Programs (TIPs) 1-8, C-10
Terminal name C-10
Terminal transmission modes A-2
Terminal Verification Facility (TVF)

Terminals
Asynchronous 1-14

Batch 1-14, 2-7

Bisynchronous 1-14
Definition C-10
HASP 1-14

Interactive 2-4

Mode 4 1-14, 2-20
Virtual 1-9

3-56
3-46

C-10

3-51

1-6

Index-4 60499500 R

Terminate-output-marker 3-37
Terminating connections 3-24
Test Utility Program (TUP) C-10
Text

Area 5-5, 5-8, 5-11, C-10
Length 5-5, 5-11, C-10

TO/MARK/R 3-37

Transaction Facility (TAP) 1-6
Transmission block 2-1, 2-4
Transparent

Delimiters for multiple-message transparent
input mode (XL) 2-22

Delimiters for single-message transparent input
mode (DL) 2-22, 3-52

Mode transmission 2-10, 2-19, A-3
Truncating data 3-42
Trunk C-10
Trunk failure and recovery 9-1

Turn-list-processing-off 3-27
Turn-list-processing-on 3-27
Turn-on-full-duplex-list-processing 3-29
Turn-on-half-duplex-list-processing 3-28
Typeahead processing 4-15, C-ll

Upline 2-1, C-ll
Upline block size 2-2

USER command 6-2

User-interrupt 3-38
User name 3-10, 6-2, C-ll

Valid field numbers and field values 3-51
Virtual channel C-ll

Worklist processing 4-15
Worklists, CCP C-ll

XL command 3-53
X.25 TIP PAD C-7

Zero-byte terminator 8-15
ZZZZZDN file 6-10
ZZZZZSN file 6-15

6-bit data 2-23

2551 Series Communications Processor 1-6

3270 Bisynchronous 1-8, 1-14

O xiii

60499500 S Index-5

COMMENT SHEET

MANUAL TITLE: Network Products Network Access Method Version 1/Communications
Control Program Version 3 Host Application Programming Reference
Manual

PUBLICATION NO. : 60499500

REVISION: S

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

FOLD

Please reply No reply necessary

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

n
c
>

§

FIRST CUSS
BUSINESS REPLY MAIL

PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

P.O. BOX 3492

Sunnyvale, California 94088-3492

FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS:

CITY/ STATE/ZIP:

TAPE TAPE

CORPORATE HEADQUARTERS, PO. BOX 0, MINNEAPOLIS. MINN. 55440 LITHO IN US A.

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

CONTRpL DATA CORPORATION

